Skip to main content

Assessing Disease State in the Pulmonary Vasculature in Clinical Practice and Research

  • Chapter
Pulmonary Hypertension

Abstract

The pulmonary circulation is normally a high-flow, low-resistance, low-pressure system that carries blood to the pulmonary microcirculation where gas exchange occurs. In pulmonary arterial hypertension (PAH), the vasculature becomes less compliant as a result of vascular smooth muscle cell proliferation and hypertrophy, and endothelial cell proliferation resulting in lumen obliteration. This change results in a highly resistant low compliance system, which places an undue load on the right ventricle, eventually leading to right heart failure. The timeline of events that result in an obliterative vascular remodeling parallels the evolution of right ventricular (RV) remodeling from a normal to a decompensated state. Patients commonly present with non- specific symptoms of exercise limitation and dyspnea. Once a diagnosis is made and patients are started on therapy clinicians and researchers face the challenge of how to serially and objectively follow patients to gauge treatment response. There are a number of approaches available and being developed to assess response to therapy. Consequently there is a need to analyze current techniques and identify the future techniques that might be useful to guide management of PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Humbert M, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122(2):156–63.

    Article  PubMed  Google Scholar 

  2. D’Alonzo GE, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    Article  PubMed  Google Scholar 

  3. Malhotra R, et al. Vasoreactivity to inhaled nitric oxide with oxygen predicts long-term survival in pulmonary arterial hypertension. Pulm Circ. 2011;1(2):250–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Boerrigter BG, et al. Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects. Eur Respir J. 2014;43(5):1316–25.

    Article  PubMed  Google Scholar 

  5. Clark AL, Poole-Wilson PA, Coats AJ. Exercise limitation in chronic heart failure: central role of the periphery. J Am Coll Cardiol. 1996;28(5):1092–102.

    Article  CAS  PubMed  Google Scholar 

  6. Rich S. The 6-minute walk test as a primary endpoint in clinical trials for pulmonary hypertension. J Am Coll Cardiol. 2012;60(13):1202–3.

    Article  PubMed  Google Scholar 

  7. Armstrong N, et al. The peak oxygen uptake of British children with reference to age, sex and sexual maturity. Eur J Appl Physiol Occup Physiol. 1991;62(5):369–75.

    Article  CAS  PubMed  Google Scholar 

  8. Miyamoto S, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2000;161(2 Pt 1):487–92.

    Article  CAS  PubMed  Google Scholar 

  9. McLaughlin VV, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53(17):1573–619.

    Article  PubMed  Google Scholar 

  10. Galie N, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    Article  PubMed  Google Scholar 

  11. Groepenhoff H, et al. Exercise testing to estimate survival in pulmonary hypertension. Med Sci Sports Exerc. 2008;40(10):1725–32.

    Article  PubMed  Google Scholar 

  12. Barst RJ, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996;334(5):296–301.

    Article  CAS  PubMed  Google Scholar 

  13. Farber HW, et al. Predicting outcomes in pulmonary arterial hypertension based on the 6-minute walk distance. J Heart Lung Transplant. 2015;34(3):362–8.

    Article  PubMed  Google Scholar 

  14. Paciocco G, et al. Oxygen desaturation on the six-minute walk test and mortality in untreated primary pulmonary hypertension. Eur Respir J. 2001;17(4):647–52.

    Article  CAS  PubMed  Google Scholar 

  15. Minai OA, et al. Heart rate recovery predicts clinical worsening in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(4):400–8.

    Article  CAS  PubMed  Google Scholar 

  16. Tonelli AR, et al. Heart rate slopes during 6-min walk test in pulmonary arterial hypertension, other lung diseases, and healthy controls. Physiol Rep. 2014;2(6):1–11. e12038.

    Google Scholar 

  17. Tonelli AR, et al. Value of impedance cardiography during 6-minute walk test in pulmonary hypertension. Clin Transl Sci. 2013;6(6):474–80.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Neal JE, Lee AS, Burger CD. Submaximal exercise testing may be superior to the 6-min walk test in assessing pulmonary arterial hypertension disease severity. Clin Respir J. 2014;8(4):404–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ramos RP, et al. Exercise oxygen uptake efficiency slope independently predicts poor outcome in PAH. Eur Resp J. 2013;5:5.

    Google Scholar 

  20. Sun XG, et al. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104(4):429–35.

    Article  CAS  PubMed  Google Scholar 

  21. Reata Pharmaceuticals I. Bardoxolone methyl evaluation in patients with pulmonary arterial hypertension (PAH) – LARIAT.In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 13 Jan 2015]. Available from: https://clinicaltrials.gov/ct2/show/NCT02036970 NLM Identifier: NCT02036970, 2014.

  22. Agarwal M, De Marco T, Rischard F, Oudiz R. Protocol-Driven Transition From Parenteral Prostanoids (PP) to Inhaled Treprostinil in Pulmonary Arterial Hypertension (PAH). Chest. 2014;146(4_Meeting Abstracts):837A–A.

    Google Scholar 

  23. Wensel R, Opitz C, Anker S. Assessment of survival in patients with primary pulmonary hypertension. Importance of cardiopulmonary exercise testing. Circulation. 2002;106:319–24.

    Article  PubMed  Google Scholar 

  24. Sun XG, et al. Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. Circulation. 2002;105(1):54–60.

    Article  PubMed  Google Scholar 

  25. Oudiz RJ, et al. Usefulness of right-to-left shunting and poor exercise gas exchange for predicting prognosis in patients with pulmonary arterial hypertension. Am J Cardiol. 2010;105(8):1186–91.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hansen JE, et al. Mixed-Expired and End-Tidal CO2 Distinguish Between Ventilation and Perfusion Defects During Exercise Testing in Patients With Lung and Heart Diseases. Chest. 2007;132(3):977–83.

    Article  PubMed  Google Scholar 

  27. Yasunobu Y, et al. ENd-tidal pco2 abnormality and exercise limitation in patients with primary pulmonary hypertension*. Chest J. 2005;127(5):1637–46.

    Article  Google Scholar 

  28. Ramos RP, et al. Heart rate recovery in pulmonary arterial hypertension: relationship with exercise capacity and prognosis. Am Heart J. 2012;163(4):580–8.

    Article  PubMed  Google Scholar 

  29. Guazzi M, Cahalin LP, Arena R. Cardiopulmonary exercise testing as a diagnostic tool for the detection of left-sided pulmonary hypertension in heart failure. J Card Fail. 2013;19(7):461–7.

    Article  PubMed  Google Scholar 

  30. American Thoracic S, American College of Chest P. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

    Article  Google Scholar 

  31. Arcasoy SM, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med. 2003;167(5):735–40.

    Article  PubMed  Google Scholar 

  32. Waxman AB. Exercise physiology and pulmonary arterial hypertension. Prog Cardiovasc Dis. 2012;55(2):172–9.

    Article  PubMed  Google Scholar 

  33. Grunig E, et al. Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation. 2009;119(13):1747–57.

    Article  PubMed  Google Scholar 

  34. Steen V, et al. Exercise-induced pulmonary arterial hypertension in patients with systemic sclerosis. Chest. 2008;134(1):146–51.

    Article  PubMed  Google Scholar 

  35. Borlaug BA, et al. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(5):588–95.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Castelain V, et al. Pulmonary artery pressure-flow relations after prostacyclin in primary pulmonary hypertension. Am J Respir Crit Care Med. 2002;165(3):338–40.

    Article  PubMed  Google Scholar 

  37. Provencher S, et al. Changes in exercise haemodynamics during treatment in pulmonary arterial hypertension. Eur Respir J. 2008;32(2):393–8.

    Article  CAS  PubMed  Google Scholar 

  38. Blumberg FC, et al. Impact of right ventricular reserve on exercise capacity and survival in patients with pulmonary hypertension. Eur J Heart Fail. 2013;15(7):771–5.

    Article  PubMed  Google Scholar 

  39. Borlaug BA. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ J. 2014;78(1):20–32.

    Article  PubMed  Google Scholar 

  40. Kitzman DW, et al. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol. 1991;17(5):1065–72.

    Article  CAS  PubMed  Google Scholar 

  41. Tolle J, Waxman A, Systrom D. Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc. 2008;40(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tolle JJ, et al. Exercise-induced pulmonary arterial hypertension. Circulation. 2008;118(21):2183–9.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Condliffe R, et al. Connective tissue disease-associated pulmonary arterial hypertension in the modern treatment era. Am J Respir Crit Care Med. 2009;179(2):151–7.

    Article  PubMed  Google Scholar 

  44. Saggar R, et al. Brief report: effect of ambrisentan treatment on exercise-induced pulmonary hypertension in systemic sclerosis: a prospective single-center, open-label pilot study. Arthritis Rheum. 2012;64(12):4072–7.

    Article  CAS  PubMed  Google Scholar 

  45. Bonderman D, et al. Right ventricular load at exercise is a cause of persistent exercise limitation in patients with normal resting pulmonary vascular resistance after pulmonary endarterectomy. Chest. 2011;139(1):122–7.

    Article  PubMed  Google Scholar 

  46. Chan AL, et al. Novel computed tomographic chest metrics to detect pulmonary hypertension. BMC Med Imaging. 2011;11:7.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Okajima Y, et al. Assessment of pulmonary hypertension what CT and MRI can provide. Acad Radiol. 2011;18(4):437–53.

    Article  PubMed  Google Scholar 

  48. Devaraj A, et al. Detection of pulmonary hypertension with multidetector CT and echocardiography alone and in combination. Radiology. 2010;254(2):609–16.

    Article  PubMed  Google Scholar 

  49. Kuriyama K, et al. CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol. 1984;19(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  50. Groves AM, et al. Semi-quantitative assessment of tricuspid regurgitation on contrast-enhanced multidetector CT. Clin Radiol. 2004;59(8):715–9.

    Article  CAS  PubMed  Google Scholar 

  51. Aviram G, et al. Significance of reflux of contrast medium into the inferior vena cava on computerized tomographic pulmonary angiogram. Am J Cardiol. 2012;109(3):432–7.

    Article  PubMed  Google Scholar 

  52. Froelich JJ, et al. Relationship between pulmonary artery volumes at computed tomography and pulmonary artery pressures in patients with- and without pulmonary hypertension. Eur J Radiol. 2008;67(3):466–71.

    Article  PubMed  Google Scholar 

  53. Haimovici JB, et al. Relationship between pulmonary artery diameter at computed tomography and pulmonary artery pressures at right-sided heart catheterization. Massachusetts General Hospital Lung Transplantation Program. Acad Radiol. 1997;4(5):327–34.

    Article  CAS  PubMed  Google Scholar 

  54. Simon MA, et al. Phenotyping the right ventricle in patients with pulmonary hypertension. Clin Transl Sci. 2009;2(4):294–9.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Heinrich M, et al. CT scan findings in chronic thromboembolic pulmonary hypertension: predictors of hemodynamic improvement after pulmonary thromboendarterectomy. Chest. 2005;127(5):1606–13.

    Article  PubMed  Google Scholar 

  56. Scholzel BE, et al. Prediction of hemodynamic improvement after pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension using non-invasive imaging. Int J Cardiovasc Imaging. 2015;31(1):143–50.

    Article  PubMed  Google Scholar 

  57. van Wolferen SA, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7.

    Article  PubMed  Google Scholar 

  58. Saba TS, et al. Ventricular mass index using magnetic resonance imaging accurately estimates pulmonary artery pressure. Eur Respir J. 2002;20(6):1519–24.

    Article  CAS  PubMed  Google Scholar 

  59. Pandya B, et al. Real-time magnetic resonance assessment of septal curvature accurately tracks acute hemodynamic changes in pediatric pulmonary hypertension. Circ Cardiovasc Imaging. 2014;7(4):706–13.

    Article  PubMed  Google Scholar 

  60. Dellegrottaglie S, et al. Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology. 2007;243(1):63–9.

    Article  PubMed  Google Scholar 

  61. Roeleveld RJ, et al. Interventricular septal configuration at mr imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005;234(3):710–7.

    Article  PubMed  Google Scholar 

  62. Lopez-Candales A, et al. Systolic eccentricity index identifies right ventricular dysfunction in pulmonary hypertension. Int J Cardiol. 2008;129(3):424–6.

    Article  PubMed  Google Scholar 

  63. Raymond RJ, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39(7):1214–9.

    Article  PubMed  Google Scholar 

  64. Iino M, et al. Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary thromboembolism. Eur Radiol. 2008;18(4):792–9.

    Article  PubMed  Google Scholar 

  65. Reesink HJ, et al. Reverse right ventricular remodeling after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance imaging to demonstrate restoration of the right ventricle. J Thorac Cardiovasc Surg. 2007;133(1):58–64.

    Article  PubMed  Google Scholar 

  66. Rajaram S, et al. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension. Eur Radiol. 2012;22(2):310–7.

    Article  PubMed  Google Scholar 

  67. Maceira AM, et al. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J. 2006;27(23):2879–88.

    Article  PubMed  Google Scholar 

  68. Lorenz CH, et al. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1(1):7–21.

    Article  CAS  PubMed  Google Scholar 

  69. Lorenz CH. The range of normal values of cardiovascular structures in infants, children, and adolescents measured by magnetic resonance imaging. Pediatr Cardiol. 2000;21(1):37–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron B. Waxman MD, PhD, FACP, FCCP, FPVRI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, M., Waxman, A.B. (2016). Assessing Disease State in the Pulmonary Vasculature in Clinical Practice and Research. In: Maron, B., Zamanian, R., Waxman, A. (eds) Pulmonary Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-23594-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23594-3_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23593-6

  • Online ISBN: 978-3-319-23594-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics