Skip to main content
  • 1569 Accesses

Abstract

This chapter reviews the use of plant growth regulator for fresh vegetable and fruit quality. Endogenous plant growth regulators, also named phytohormones, are important regulator of many functions in plant development and physiology. First, this chapter describes the five major classes of PGR (auxins, gibberellins, cytokinins, abscisic acid, and ethylene) including their nature, physiological functions, and horticultural practices. Some synthetic PGRs are used extensively to control sensorial and nutritional quality and ripening or senescence processes. So we focus this chapter on the effects of exogenously PGR applied in pre- and postharvest to maintain the quality of fresh produce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, S. R., P. A. Rose, A. J. Cutler, J. J. Balsevich, and M. K. Walker-Simmons (1997) 8 Methylene ABA: An effective and persistent analog of abscisic acid. Plant Physiology 144:89–97.

    Google Scholar 

  • Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055. doi:10.1093/jxb/erf072.

    Article  CAS  Google Scholar 

  • Amorós, A., Zapata, P., Pretel, M. T., Botella, M. A., Almansa, M. S., & Serrano, M. (2004). Role of naphthalene acetic acid and phenothiol treatments on increasing fruit size and advancing fruit maturity in loquat. Scientia Horticulturae, 101(4), 387–398. doi:10.1016/j.scienta.2003.11.010. doi:http://dx.doi.org/.

    Article  Google Scholar 

  • An, J., Zhang, M., Lu, Q., & Zhang, Z. (2006). Effect of a prestorage treatment with 6-benzylaminopurine and modified atmosphere packaging storage on the respiration and quality of green asparagus spears. Journal of Food Engineering, 77(4), 951–957. doi:10.1016/j.jfoodeng.2005.08.024. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Asghari, M., & Aghdam, M. S. (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science and Technology, 21(10), 502–509. doi:10.1016/j.tifs.2010.07.009. doi:http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Bal, E., & Celik, S. (2010). The effects of postharvest treatments of salicylic acid and potassium permanga- nate on the storage of kiwifruit. Bulgarian Journal of Agricultural Science, 16, 576–584.

    Google Scholar 

  • Biton, E., Kobiler, I., Feygenberg, O., Yaari, M., Friedman, H., & Prusky, D. (2014). Control of alternaria black spot in persimmon fruit by a mixture of gibberellin and benzyl adenine, and its mode of action. Postharvest Biology and Technology, 94, 82–88. doi:10.1016/j.postharvbio.2014.03.009. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Cantín, C. M., Fidelibus, M. W., & Crisosto, C. H. (2007). Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biology and Technology, 46(3), 237–241. doi:10.1016/j.postharvbio.2007.05.017. http://dx.doi.org/.

    Article  Google Scholar 

  • Chen, J.-Y., Wen, P.-F., Kong, W.-F., Pan, Q.-H., Zhan, J.-C., Li, J.-M., et al. (2006). Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biology and Technology, 40(1), 64–72. doi:10.1016/j.postharvbio.2005.12.017. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Chen, B., & Yang, H. (2013). 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status. Journal of the Science of Food and Agriculture, 93, 1915–1921. doi:10.1002/jsfa.5990.

    Article  CAS  Google Scholar 

  • Chen, J., Zou, X., Liu, Q., Wang, F., Feng, W., & Wan, N. (2014). Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Protection, 56, 31–36. doi:10.1016/j.cropro.2013.10.007. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Concha, C. M., Figueroa, N. E., Poblete, L. A., Oñate, F. A., Schwab, W., & Figueroa, C. R. (2013). Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiology and Biochemistry, 70, 433–444. doi:10.1016/j.plaphy.2013.06.008. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Costa, M. L., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2005). Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20 °C. Postharvest Biology and Technology, 35(2), 191–199. doi:10.1016/j.postharvbio.2004.07.007. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Davies, P. J. (2010) Plant Hormones: Biosynthesis, Signal Transduction, Action!. p. 801pp Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Ding, Y., Sheng, J., Li, S., Nie, Y., Zhao, J., Zhu, Z., et al. (2015). The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 101, 88–95. doi:10.1016/j.postharvbio.2014.12.001. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Divya, P., Puthusseri, B., & Neelwarne, B. (2014). The effect of plant regulators on the concentration of carotenoids and phenolic compounds in foliage of coriander. LWT - Food Science and Technology, 56(1), 101–110. doi:10.1016/j.lwt.2013.11.012. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Ferrara, G., Mazzeo, A., Matarrese, A., Pacucci, C., Pacifico, A., Gambacorta, G., et al. (2013). Application of Abscisic Acid (S-ABA) to ‘Crimson Seedless’ Grape Berries in a Mediterranean Climate: Effects on Color, Chemical Characteristics, Metabolic Profile, and S-ABA Concentration. Journal of Plant Growth Regulation, 32(3), 491–505. doi:10.1007/s00344-012-9316-2.

    Article  CAS  Google Scholar 

  • Figueroa, C. R., Opazo, M. C., Vera, P., Arriagada, O., Díaz, M., & Moya-León, M. A. (2012). Effect of postharvest treatment of calcium and auxin on cell wall composition and expression of cell wall-modifying genes in the Chilean strawberry (Fragaria chiloensis) fruit. Food Chemistry, 132(4), 2014–2022. doi:10.1016/j.foodchem.2011.12.041.

    Article  CAS  Google Scholar 

  • Flaishman, M. A., Shargal, A., & Stern, R. A. (2001). The synthetic cytokinin CPPU increases fruit size and yield of ‘Spadona’ and ‘Costia’ pear (Pyrus communis L.). Journal of Horticultural Science and Biotechnology, 76, 145–149.

    CAS  Google Scholar 

  • Flores, G., Blanch, G.P., Ruiz del Castillo, M.L. (2015). Postharvest treatment with (−) and (+)-methyl jasmonate stimulates anthocyanin accumulation in grapes. LWT: Food Science and Technology. (0) doi:http://dx.doi.org/10.1016/j.lwt.2014.12.033.

    Google Scholar 

  • Gambetta, G., Mesejo, C., Martínez-Fuentes, A., Reig, C., Gravina, A., & Agustí, M. (2014). Gibberellic acid and norflurazon affecting the time-course of flavedo pigment and abscisic acid content in ‘Valencia’ sweet orange. Scientia Horticulturae, 180, 94–101. doi:10.1016/j.scienta.2014.10.021. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Garcia-Mata, C., & Lamattina, L. (2007). Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide, 17(3–4), 143–151.

    Article  CAS  Google Scholar 

  • Gianfagna, T.J. (1995) Use of natural and synthetic growth regulators, In: P.J. Davis, ed, Plant hormones: Physiology, biochemistry, and molecular biology. Kluwer Academic Publishers, Boston, 762–766.

    Google Scholar 

  • Grossmann, K. and J. Jung. (1984) Influence of terpenoid analogues of abscisic acid on stomatal movement and leaf senescence. Journal of Agronomy and Crop Science 153:14–22.

    Google Scholar 

  • Hayata, Y., Niimi, Y., Inoue, K., & Kondo, S. (2000). CPPU and BA, with and without pollination, affect set, growth, and quality of muskmelon fruit. HortScience, 35, 868–870.

    CAS  Google Scholar 

  • Huang, H., & Jiang, Y. (2012). Effect of plant growth regulators on banana fruit and broccoli during storage. Scientia Horticulturae, 145, 62–67. doi:10.1016/j.scienta.2012.07.025. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Huang, R.-H., Liu, J.-H., Lu, Y.-M., & Xia, R.-X. (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’ navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47(2), 168–175. doi:10.1016/j.postharvbio.2007.06.018. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Khader, S. E. S. A. (1991). Effect of preharvest application of GA3 on postharvest behaviour of mango fruits. Scientia Horticulturae, 47(3–4), 317–321. doi:10.1016/0304-4238(91)90014-P. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Khader, S. E. S. A., Singh, B. P., & Khan, S. A. (1988). Effect of GA3 as a post-harvest treatment of mango fruit on ripening, amylase and peroxidase activity and quality during storage. Scientia Horticulturae, 36(3–4), 261–266. doi:10.1016/0304-4238(88)90060-X. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Kim, J. G., Takami, Y., Mizugami, T., Beppu, K., Fukuda, T., & Kataoka, I. (2006). CPPU application on size and quality of hardy kiwifruit. Scientia Horticulturae, 110, 219–222.

    Article  CAS  Google Scholar 

  • Kobiler, I., Shalom, Y., Roth, I., Akerman, M., Vinokur, Y., Fuchs, Y., et al. (2001). Effect of 2,4-dichlorophenoxyacetic acid on the incidence of side and stem end rots in mango fruits. Postharvest Biology and Technology, 23(1), 23–32. doi:10.1016/S0925-5214(01)00092-8. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Korasick, D. A., Enders, T. A., & Strader, L. C. (2013). Auxin biosynthesis and storage forms. Journal of Experimental Botany, 64(9), 2541–2555. doi:10.1093/jxb/ert080.

    Article  CAS  Google Scholar 

  • Koukounaras, A., Siomos, A. S., & Sfakiotatis, E. (2010). Effects of 6-BA treatmentson yellowingandquality of storedrocket (Erucasativamill.) leaves. Journal of Food Quality, 33, 768–779. doi:10.1111/j.1745-4557.2010.00354.x.

    Article  CAS  Google Scholar 

  • Kucuker, E., Ozturk, B., Celik, S. M., & Aksit, H. (2014). Pre-harvest spray application of methyl jasmonate plays an important role in fruit ripening, fruit quality and bioactive compounds of Japanese plums. Scientia Horticulturae, 176, 162–169. doi:10.1016/j.scienta.2014.07.007. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Lafuente, M. T., & Sala, J. M. (2002). Abscisic acid levels and the influence of ethylene, humidity and storage temperature on the incidence of postharvest rindstaning of ‘Navelina’ orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biology and Technology, 25(1), 49–57. doi:10.1016/S0925-5214(01)00162-4. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Lehmann, T., Hoffmann, M., Hentrich, M., & Pollmann, S. (2010). Indole-3-acetamide-dependent auxin biosynthesis: A widely distributed way of indole-3-acetic acid production? European Journal of Cell Biology, 89(12), 895–905. doi:10.1016/j.ejcb.2010.06.021. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Leng, P., Yuan, B., & Guo, Y. (2014). The role of abscisic acid in fruit ripening and responses to abiotic stress. Journal of Experimental Botany, 65(16), 4577–4588. doi:10.1093/jxb/eru204.

    Article  Google Scholar 

  • Lers, A., Jiang, W. B., Lomanies, E., & Aharoni, N. (1998). Gibberellic acid and CO2 additive effect in retarding postharvest senescence of parsley, J. Food Science, 63, 66–68.

    Article  CAS  Google Scholar 

  • Lichanporn, I., & Techavuthiporn, C. (2013). The effects of nitric oxide and nitrous oxide on enzymatic browning in longkong (Aglaia dookkoo Griff.). Postharvest Biology and Technology, 86, 62–65. doi:10.1016/j.postharvbio.2013.06.021. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Liu, X., Shiomi, S., Nakatsuka, A., Kubo, Y., Nakamura, R., & Inaba, A. (1999). Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit. Plant Physiology, 121(4), 1257–1265. doi:10.1104/pp. 121.4.1257.

    Article  CAS  Google Scholar 

  • Lurie, S., & Crisosto, C. H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37(3), 195–208. doi:10.1016/j.postharvbio.2005.04.012. http://dx.doi.org/.

    Article  Google Scholar 

  • Manjunatha, G., Lokesh, V., & Neelwarne, B. (2010). Nitric oxide in fruit ripening: Trends and opportunities. Biotechnology Advances, 28(4), 489–499. doi:10.1016/j.biotechadv.2010.03.001.

    Article  CAS  Google Scholar 

  • Mano, Y., & Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. Journal of Experimental Botany. doi:10.1093/jxb/ers091.

    Google Scholar 

  • Marzouk, H. A., & Kassem, H. A. (2011). Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Scientia Horticulturae, 130(2), 425–430. doi:10.1016/j.scienta.2011.07.013. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • McAtee, P., Karim, S., Schaffer, R., & David, K. (2013). A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science, 4, 79. doi:10.3389/fpls.2013.00079.

    Article  Google Scholar 

  • Mworia, E. G., Yoshikawa, T., Yokotani, N., Fukuda, T., Suezawa, K., Ushijima, K., et al. (2010). Characterization of ethylene biosynthesis and its regulation during fruit ripening in kiwifruit, Actinidia chinensis ‘Sanuki Gold’. Postharvest Biology and Technology, 55(2), 108–113. doi:10.1016/j.postharvbio.2009.08.007. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Okamoto, M., Peterson, F. C., Defries, A., Park, S.-Y., Endo, A., Nambara, E., et al. (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences, 110(29), 12132–12137. doi:10.1073/pnas.1305919110.

    Article  CAS  Google Scholar 

  • Ortolá, A. G., Monerri, C., & Guardiola, J. L. (1991). The use of naphthalene acetic acid as a fruit growth enhancer in Satsuma mandarin: a comparison with the fruit thinning effect. Scientia Horticulturae, 47(1–2), 15–25. doi:10.1016/0304-4238(91)90023-R. http://dx.doi.org/.

    Article  Google Scholar 

  • Pompodakis, N. E., & Joyce, D. C. (2003). Abscisic acid analogue effects on the vase life and leaf crisping of cut Baccara roses. Australian Journal of Experimental Agriculture, 43(4), 425–428. doi:10.1071/EA02036. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Puli, M. R., & Raghavendra, A. S. (2012). Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum. Journal of Experimental Botany, 63(3), 1349–1356. doi:10.1093/jxb/err364.

    Article  CAS  Google Scholar 

  • Raban, E., Kaplunov, T., Zutahy, Y., Daus, A., Alchanatis, V., Ostrovsky, V., et al. (2013). Rachis browning in four table grape cultivars as affected by growth regulators or packaging. Postharvest Biology and Technology, 84, 88–95. doi:10.1016/j.postharvbio.2013.03.021. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Ramakrishna, M., Haribabu, K., & Purushotham, K. (2002). Effect of post-harvest application of growth regulators on storage behavior of papaya (Carica papaya L.). Journal of Food Science and Technology, 39(6), 657–659.

    Google Scholar 

  • Ranjbaran, E., Sarikhani, H., Bakhshi, D., & Pouya, M. (2011). Investigation of Salicylic Acid Application to Reduce Postharvest Losses in Stored ‘Bidaneh Ghermez’ Table Grapes. International Journal of Fruit Science, 11(4), 430–439. doi:10.1080/15538362.2011.630591.

    Article  Google Scholar 

  • Romero, P., Rodrigo, M. J., & Lafuente, M. T. (2013). Differential expression of the Citrus sinensis ABA perception system genes during postharvest fruit dehydration. Postharvest Biology and Technology, 76, 65–73. doi:10.1016/j.postharvbio.2012.09.010. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Sakakibara, H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431–449.

    Article  CAS  Google Scholar 

  • Salvador, A., Sdiri, S., Navarro, P., Monterde, A., & Martínez-Jávega, J. M. (2010). The use of auxins to maintain postharvest quality of citrus fruit. Acta Horticulturae, 877, 671–677.

    Article  CAS  Google Scholar 

  • Schröder, M., Link, H., & Bangerth, K. F. (2013). Correlative polar auxin transport to explain the thinning mode of action of benzyladenine on apple. Scientia Horticulturae, 153, 84–92. doi:10.1016/j.scienta.2013.02.001. http://dx.doi.org/.

    Article  Google Scholar 

  • Schubert, J., K. Roser, K. Grossmann, H. Sauter, and J. Jung. (1990) Transpiration-inhibiting abscisic acid analogs. Journal of Plant Growth Regulation 10:27–32.

    Google Scholar 

  • Sdiri, S., Navarro, P., Monterde, A., Benabda, J., & Salvador, A. (2012). New degreening treatments to improve the quality of citrus fruit combining different periods with and without ethylene exposure. Postharvest Biology and Technology, 63(1), 25–32. doi:10.1016/j.postharvbio.2011.08.005. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Sdiri, S., Navarro, P., & Salvador, A. (2013). Postharvest application of a new growth regulator reduces calyx alterations of citrus fruit induced by degreening treatment. Postharvest Biology and Technology, 75, 68–74. doi:10.1016/j.postharvbio.2012.08.004. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Seo, M., & Koshiba, T. (2002). Complex regulation of ABA biosynthesis in plants. Trends in Plant Science, 7(1), 41–48.

    Article  CAS  Google Scholar 

  • Serrano, M., Martínez-Romero, D., Zuzunaga, M., Riquelme, F., & Valero, D. (2004). Calcium, Polyamine and Gibberellin Treatments to Improve Postharvest Fruit Quality. In S. Jain (Ed.), Dris R (pp. 55–68). Springer Netherlands: Production Practices and Quality Assessment of Food Crops. doi:10.1007/1-4020-2535-1_3.

    Google Scholar 

  • Simon, S., & Petrášek, J. (2011). Why plants need more than one type of auxin. Plant Science, 180(3), 454–460. doi:10.1016/j.plantsci.2010.12.007. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Singh, S. P., Saini, M. K., Singh, J., Pongener, A., & Sidhu, G. S. (2014). Preharvest application of abscisic acid promotes anthocyanins accumulation in pericarp of litchi fruit without adversely affecting postharvest quality. Postharvest Biology and Technology, 96, 14–22. doi:10.1016/j.postharvbio.2014.05.005. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Stern, R. A., Flaishman, M., Applebaum, S., & Ben-Arie, R. (2007a). Effect of synthetic auxins on fruit development of ‘Bing’ cherry (Prunus avium L.). Scientia Horticulturae, 114(4), 275–280. doi:10.1016/j.scienta.2007.07.010. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Stern, R. A., Flaishman, M., & Ben-Arie, R. (2007b). Effect of synthetic auxins on fruit size of five cultivars of Japanese plum (Prunus salicina Lindl.). Scientia Horticulturae, 112(3), 304–309. doi:10.1016/j.scienta.2006.12.032. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Suttle, J. (2003). Auxin-induced sprout growth inhibition: Role of endogenous ethylene. American Journal of Potato Research, 80(5), 303–309. doi:10.1007/BF02854314.

    Article  CAS  Google Scholar 

  • Thomas, S. G., Rieu, I., & Steber, C. M. (2005). Gibberellin metabolism and signaling. In G. Litwack (Ed.), Vitamins and Hormones (pp. 289–337). London: Elsevier.

    Google Scholar 

  • Tivendale, N. D., Ross, J. J., & Cohen, J. D. (2014). The shifting paradigms of auxin biosynthesis. Trends in Plant Science, 19(1), 44–51. doi:10.1016/j.tplants.2013.09.012. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Vargas, A., & Lopez, J. A. (2011). Effect of dose rate, application method and commercial formulations of GA3 on banana (Musa AAA)fruit greenlife. Global Science Books. Fresh Produce, 5(1), 51–55.

    Google Scholar 

  • Wang, K., Jin, P., Han, L., Shang, H., Tang, S., Rui, H., et al. (2014). Methyl jasmonate induces resistance against Penicillium citrinum in Chinese bayberry by priming of defense responses. Postharvest Biology and Technology, 98, 90–97. doi:10.1016/j.postharvbio.2014.07.009. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Wang, B., Wang, J., Liang, H., Yi, J., Zhang, J., Lin, L., et al. (2008). Reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biology and Technology, 48(2), 172–181. doi:10.1016/j.postharvbio.2007.10.005. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Wasternack, C. (2014). Action of jasmonates in plant stress responses and development: Applied aspects. Biotechnology Advances, 32(1), 31–39. doi:10.1016/j.biotechadv.2013.09.009. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Woodward, A. W., & Bartel, B. (2005). Auxin: Regulation, Action, and Interaction. Annals of Botany, 95(5), 707–735. doi:10.1093/aob/mci083.

    Article  CAS  Google Scholar 

  • Yang, S. F., & Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35, 155–189.

    Article  CAS  Google Scholar 

  • Zaharah, S. S., Singh, Z., Symons, G. M., & Reid, J. B. (2013). Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biology and Technology, 75, 37–44. doi:10.1016/j.postharvbio.2012.07.009. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Zhang, C., & Whiting, M. D. (2011). Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Scientia Horticulturae, 127(3), 341–346. doi:10.1016/j.scienta.2010.11.006. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Zhu, T., Tan, W.-R., Deng, X.-G., Zheng, T., Zhang, D.-W., & Lin, H.-H. (2015a). Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology, 100, 196–204. doi:10.1016/j.postharvbio.2014.09.016. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Zhu, F., Yun, Z., Ma, Q., Gong, Q., Zeng, Y., Xu, J., et al. (2015b). Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biology and Technology, 100, 8–15. doi:10.1016/j.postharvbio.2014.09.014. http://dx.doi.org/.

    Article  CAS  Google Scholar 

  • Zoffoli, J. P., Latorre, B. A., & Naranjo, P. (2009). Preharvest applications of growth regulators and their effect on postharvest quality of table grapes during cold storage. Postharvest Biology and Technology, 51(2), 183–192. doi:10.1016/j.postharvbio.2008.06.013. http://dx.doi.org/.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félicie LOPEZ-LAURI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

LOPEZ-LAURI, F. (2016). Plant Growth Regulators. In: Siddiqui, M., Ayala Zavala, J., Hwang, CA. (eds) Postharvest Management Approaches for Maintaining Quality of Fresh Produce. Springer, Cham. https://doi.org/10.1007/978-3-319-23582-0_8

Download citation

Publish with us

Policies and ethics