Skip to main content

Abstract

The natural plant signalling molecules such as polyamines (PAs), nitric oxide (NO), and salicylic acid (SA) are involved in the developmental continuum of fruits right from fruit initiation to senescence. Being physiologically active, fruit experiences an early postharvest decay. The polyamines (putrescine, spermidine, and spermine) have been reported to modify the postharvest physiological responses of fruit by regulating senescent changes and providing resistance to biotic and abiotic stresses. This chapter first describes the source, biosynthesis, and types of PAs. The time and methods of PA application are also described. The second part deals with the effect of PAs on gene expression and the postharvest quality of fruit, including physiological, physical, biochemical, and other shelf life–attributing parameters. The alleviation of postharvest biotic and abiotic stresses using PAs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, S., & Murthy, S. D. S. (2013). Role of polyamines and their effect on photosynthesis in plants. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(3), 596–605.

    CAS  Google Scholar 

  • Aday, M. S., Temizkan, R., Buyukcan, M. B., & Caner, C. (2012). An innovative technique for extending shelf life of strawberry: Ultrasound. LWT-Food Science Technology, 52, 93–101.

    Article  CAS  Google Scholar 

  • Ahmad, M. S., & Siddiqui, M. W. (2015). Postharvest quality assurance of fruits: Practical approaches for developing countries. New York: Springer.

    Book  Google Scholar 

  • Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., et al. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28, 1867–1876.

    Article  CAS  Google Scholar 

  • Amin, H., & Rahemi, M. (2007). Investigation of effect of polyamines on chilling control in lemon. 5th Congress of Iranian for Horticultural Science. Shiraz.

    Google Scholar 

  • Asrey, R., Sasikala, C., Barman, K., & Koley, T. K. (2008). Advances in post harvest treatments of fruits—A review. Annals of Horticulture, 1(1), 1–10.

    Google Scholar 

  • Bais, H. P., & Ravishankar, G. A. (2002). Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue and Organ Culture, 69, 1–34.

    Article  CAS  Google Scholar 

  • Bal, E. (2012). Effect of postharvest putrescine and salicylic acid treatments on cold storage duration and quality of sweet cherries. Suleyman Demirel University Journal of the Faculty of Agriculture, 7, 23–31.

    Google Scholar 

  • Bal, E. (2013). Effects of exogenous polyamine and ultrasound treatment to improve peach storability. Chilean Journal of Agricultural Research, 73(4), 435–440.

    Article  Google Scholar 

  • Bangi, N. (1986). The function of metabolism of polyamines in plant. Acta Horticulturae, 179, 95–103.

    Google Scholar 

  • Barman, K., Ahmad, M.S., Siddiqui, M.W. (2015). Factors Affecting the Quality of Fruits and Vegetables: Recent Understandings. In: Postharvest Biology and Technology of Horticultural Crops: Principles and Practices for Quality Maintenance (Ed. M.W. Siddiqui). Apple Academic Press, Inc., New Jersey, USA. pp. 1–50.

    Google Scholar 

  • Barman, K., Asrey, R., & Pal, R. K. (2011). Putrescine and carnauba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate quality during cold storage. Scientia Horticulturae, 130, 795–800.

    Article  CAS  Google Scholar 

  • Beer, S. V., & Kosuge, G. (1970). Spermidine and spermine—Polyamine components of turnip yellow mosaic virus. Virology, 40, 930–938.

    Article  CAS  Google Scholar 

  • Benavides, M. P., Gallego, S. M., Comba, M. E., & Tomaro, M. L. (2000). Relationship between polyamines and paraquat toxicity in sunflower leaf discs. Plant Growth Regulation, 31(3), 215–224.

    Article  CAS  Google Scholar 

  • Bender, R. J., Brecht, J. K., Sargent, S. A., Huber, D. J., Subhadrabandhu, S., & Pichakum, A. (2000). Low temperature controlled atmosphere storage for tree-ripe mangoes (Mangifera indica L.). Acta Horticulturae, 509, 447–458.

    Article  CAS  Google Scholar 

  • Bhagwan, A., Reddy, Y. N., & Rao, P. V. (2000). Postharvest application of polyamines to improve the shelf-life of tomato fruit. Indian Journal of Horticulture, 57, 133–138.

    Google Scholar 

  • Bonghi, C., Ferrarese, L., Ruperti, B., Tonutti, P., & Ramina, A. (1998). Endo-β-1, 4-glucanases are involved in peach fruit growth and ripening, and regulated by ethylene. Physiologia Plantarum, 102, 346–352.

    Article  CAS  Google Scholar 

  • Borrell, A., Culianezmacia, F. A., Altabella, T., Besford, R. T., Flores, D., & Tiburcio, A. F. (1995). Arginine decarboxylase is localized in chloroplasts. Plant Physiology, 109, 771–776.

    CAS  Google Scholar 

  • Bors, N., Langebartels, C., Michel, H., & Sanderman, H. J. (1989). Polyamines as radical scavengers and potents against ozone damage. Phytochemistry, 28, 1589–1595.

    Article  CAS  Google Scholar 

  • Bortolotti, C., Cordeiro, A., Alcazar, R., Borrell, A., Culianez-Macia, F. A., Tiburcio, A. F., et al. (2004). Localization of arginine decarboxylase in tobacco plants. Physiologia Plantarum, 120, 84–92.

    Article  CAS  Google Scholar 

  • Bregoli, A. M., Scaramagli, S., Costa, G., Sabatini, E., Ziosi, V., Biondi, S., et al. (2002). Peach (Prunus persica L.) fruit ripening: Aminoethoxyvinylglycine (AVG) and exogenous polyamines affect ethylene emission and flesh firmness. Physiologia Plantarum, 114, 472–481.

    Article  CAS  Google Scholar 

  • Cao, S., Hu, Z., & Pang, B. (2010). Optimization of postharvest ultrasonic treatment of strawberry fruit. Postharvest Biology and Technology, 55, 150–153.

    Article  Google Scholar 

  • Chang, K. S., Lee, S. H., Hwang, S. B., & Park, K. Y. (2000). Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). The Plant Journal, 24, 45–56.

    Article  CAS  Google Scholar 

  • Chen, Y., Jiang, Y., Yang, S., Yang, E., Yang, B., & Prasad, K. N. (2012). Effects of ultrasonic treatment on pericarp browning of postharvest litchi fruit. Journal of Food Biochemistry, 36, 613–620.

    Article  CAS  Google Scholar 

  • Chen, Z., & Zhu, C. (2011). Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biology and Technology, 61, 117–123.

    Article  CAS  Google Scholar 

  • Costa, G., & Bagni, N. (1983). Effect of polyamines on fruit set of apple. HortScience, 18, 59–61.

    CAS  Google Scholar 

  • Costa, G., Baraldi, R., & Bagbi, N. (1984). Influence of putrescine on fruit-set of apple. Acta Horticulturae, 149, 189–195.

    Article  Google Scholar 

  • Davarynejad, G., Zarei, M., Ardakani, E., & Nasrabadi, M. E. (2013). Influence of putrescine application on storability, postharvest quality and antioxidant activity of two Iranian apricot (Prunus armeniaca L.) cultivars. Notulae Scientia Biologicae, 5(2), 212–219.

    CAS  Google Scholar 

  • De Filippi, B. G., Whitaker, B. D., Hess-Pierce, B. M., & Kader, A. A. (2006). Development and control of scald on wonderful pomegranates during long-term storage. Postharvest Biology and Technology, 41, 234–243.

    Article  CAS  Google Scholar 

  • Diaz-Mula, H. M., Zapata, P. J., Guillen, F., Martínez-Romero, D., Cas-tillo, S., Serrano, M., et al. (2009). Changes in hydrophilic and lipophilic antioxidant activity and related bioactive compounds during postharvest storage of yellow and purple plum cultivars. Postharvest Biology and Technology, 51, 354–363.

    Article  CAS  Google Scholar 

  • Dibble, A. R. G., Davies, P. J., & Mutschler, M. A. (1988). Polyamine content of long-keeping Alcobaca tomato fruit. Plant Physiology, 86, 338–340.

    Article  CAS  Google Scholar 

  • Edreva, A. (1996). Polyamines in plants: Review. Bulgarian Journal of Plant Physiology, 22(1–2), 73–101.

    CAS  Google Scholar 

  • Eshel, D., Regev, R., Orenstein, J., Droby, S., & Gan-Mor, S. (2009). Combining physical, chemical and biological methods for synergistic control of postharvest diseases: A case study of Black Root Rot of carrot. Postharvest Biology and Technology, 54, 48–52.

    Article  CAS  Google Scholar 

  • Esna-Ashari, M., & Zokaee-Khosroshahi, M. (2008). Polyamines and horticultural science (p. 293). Hamedan: Publication of Bu-ali Sina University.

    Google Scholar 

  • Esterbauer, H., Schaur, J. R., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biology and Medicine, 11, 81–128.

    Article  CAS  Google Scholar 

  • Facchini, P. J., Hagel, J., & Zulak, K. G. (2002). Hydroxycinnamic acid amide metabolism: Physiology and biochemistry. Canadian Journal of Botany, 80, 577–589.

    Article  CAS  Google Scholar 

  • Faust, M., & Wang, S. Y. (1993). Polyamines in horticultural important plants. Horticultural Review, 14, 333–356.

    Google Scholar 

  • Fischer, R. L., & Bennett, A. B. (1991). Role of cell wall hydrolysis in fruit ripening. Plant Molecular Biology, 42, 675–703.

    CAS  Google Scholar 

  • Franco-Mora, O., Tanabe, K., Itai, A., Tamura, F., & Itamura, H. (2005). Relationship between endogenous free polyamine content and ethylene evolution during fruit growth and ripening of Japanese pear (Pyrus pyrifolia Nakai). Journal of the Japanese Society for Horticultural Science, 74, 221–227.

    Article  CAS  Google Scholar 

  • Galston, A. W., & Sawhney, R. K. (1987). Polyamines and senescence in plants. In W. W. Thomson, E. A. Nothnagel, & R. C. Huffaker (Eds.), Plant senescence: Its biochemistry and physiology (pp. 167–181). Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  • Galston, A. W., & Sawhney, R. K. (1990a). Polyamines in plant physiology. Plant Physiology, 94, 606–610.

    Article  Google Scholar 

  • Galston, A. W., & Sawhney, R. K. (1990b). Polyamine and plant physiology. Plant Physiology, 94, 406–410.

    Article  CAS  Google Scholar 

  • Galston, A. W., Sawhney, R. K., Altabella, T., & Tiburcio, A. F. (1997). Plant polyamines in reproductive activity and response to abiotic stress. Botanica Acta, 110, 197–207.

    Article  CAS  Google Scholar 

  • Garcia, J. L., Rufz-Altisent, M., & Barreiro, P. (1995). Factors influencing mechanical properties and bruise susceptibility of apples and pears. Journal of Agricultural Engineering and Research, 61, 11–18.

    Article  Google Scholar 

  • Ghasemnezhad, M., Shiri, M. A., & Sanavi, M. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Caspian Journal of Environmental Sciences, 8(1), 2533.

    Google Scholar 

  • Gonzalez-Aguilar, G. A., Wang, C. Y., Buta, J. G., & Krizek, D. T. (2001). Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe ‘Tommy Atkins’ mangoes. International Journal of Food Science and Technology, 36, 767–773.

    Article  CAS  Google Scholar 

  • Gonzalez-Aguilar, G., Wang, C. Y., & Buta, G. J. (2004). UV-C irradiation reduces breakdown and chilling injury of peaches during cold storage. Journal of the Science of Food and Agriculture, 84, 415–422.

    Article  CAS  Google Scholar 

  • Gonzalez-Aguilar, G. A., Zacaras, L., Mulas, M., & Lafu-ente, M. T. (1997). Temperature and duration of water dips influence chilling injury, decay and polyamine content in ‘Fortune’ mandarins. Postharvest Biology and Technology, 12, 61–69.

    Article  CAS  Google Scholar 

  • Hanfrey, C., Franceschetti, M., Mayer, M. J., Illingworth, C., & Michael, A. J. (2002). Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. The Journal of Biological Chemistry, 277, 44131–44139.

    Article  CAS  Google Scholar 

  • Hayes, J. A., Blaikie, F. H., Downs, C. G., & Sealey, D. F. (1994). Textural and physiological changes during ripening. Scientia Horticulturae, 58, 1–15.

    Article  Google Scholar 

  • Hobson, G. E., Nichol, S. R., Davies, J. N., & Atkey, P. T. (1984). The inhibition of tomato fruit ripening by silver. Journal of Plant Physiology, 116, 21–29.

    Article  CAS  Google Scholar 

  • Hung, S. H., Wang, C. C., Ivanov, S. V., Alexieva, V., & Yu, C. W. (2007). Repetition of hydrogen peroxide treatment induces a chilling tolerance comparable to cold acclimation in mung bean. Journal of the American Society for Horticultural Science, 132(6), 770–776.

    CAS  Google Scholar 

  • Hunter, D. C., & Burritt, D. J. (2012). Polyamines of plant origin - An important dietary consideration for human health. In: Venketeshwer R, editor. Phytochemicals as nutraceuticals - Global approaches to their role in nutrition and health. Rijeka, Croatia: InTech. pp. 225–244.

    Google Scholar 

  • Ishaq, S., Rathore, H. A., Majeed, S., Awan, S., & Zulfiqar-Ali-Shah, S. (2009). The studies on the physico-chemical and organoleptic characteristics of apricot (Prunus armeniaca L.) produced in Rawalakot, Azad Jammu and Kashmir during storage. Pakistan Journal of Nutrition, 8(6), 856–860.

    Article  CAS  Google Scholar 

  • Jawandha, S. K., Gill, M. S., Singh, N. P., Gill, P. P. S., & Singh, N. (2012). Effect of post-harvest treatments of putrescine on storage of Mango cv. Langra. African Journal of Agricultural Research, 7(48), 6432–6436.

    Article  Google Scholar 

  • Ji, L., Pang, J., Li, S., Xiong, B., & Cai, L. G. (2012). Application of new physical storage technology in fruit and vegetable industry. African Journal of Biotechnology, 11, 6718–6722.

    Google Scholar 

  • Jiang, Y. M., & Chen, F. (1995). A study on polyamine change and browning of fruit during cold storage of litchi (Litchi chinensis Sonn). Postharvest Biology and Technology, 5, 245–250.

    Article  CAS  Google Scholar 

  • Kader, A. A., & Arpaia, M. L. (2002). Postharvest handling systems: Subtropical fruit. In A. Kader (Ed.), Postharvest technology of horticultural crops (pp. 233–240). Oakland, CA: Regents of the University of California, DNAR.

    Google Scholar 

  • Katoh, Y., Hasegawa, T., Suzuki, T., & Fujji, T. (1987). Effect of 1-aminocyclopropane 1-carboxylic acid production on the changes in the polyamine levels in Hiproly barley callus after auxin withdrawal. Agricultural and Biological Chemistry, 51, 2457–2463.

    Article  CAS  Google Scholar 

  • Kaur, B., Jawandha, S. K., Singh, H., & Thakur, A. (2013). Effect of putrescine and calcium on colour changes of stored peach fruits. International Journal of Agriculture, Environment & Biotechnology, 6(2), 301–304.

    Google Scholar 

  • Ke, D., & Romani, R. J. (1988). Effects of spermidine on ethylene production and the senescence of suspension-cultured pear fruit cells. Plant Physiology and Biochemistry, 26, 109–116.

    CAS  Google Scholar 

  • Ketsa, S., Chidtragool, S., Klein, J. D., & Lurie, S. (1999). Firmness, pectin components and cell wall hydrolases of mango fruit following low-temperature stress. The Journal of Horticultural Science and Biotechnology, 74, 685–689.

    CAS  Google Scholar 

  • Khan, A. S., Singh, Z., Abbasi, N. A., & Swinny, E. E. (2008). Pre or post-harvest applications of putrescine and low temperature storage affect fruit ripening and quality of ‘Angelino’ plum. Journal of the Science of Food and Agriculture, 88, 1686–1695.

    Article  CAS  Google Scholar 

  • Khan, A. S., Singh, Z., & Abbasi, N. A. (2007). Pre-storage putrescine application suppresses ethylene biosynthesis and retards fruit softening during low temperature storage in ‘Angelino’ plum. Postharvest Biology and Technology, 46, 36–46.

    Article  CAS  Google Scholar 

  • Khosroshahi, M. R. Z., & Ashari, E. M. (2008). Effect of putrescine application on post-harvest life and physiology of strawberry, apricot, peach and sweet cherry fruits. Journal of Science and Technology of Agriculture and Natural Resources, 45, 219–230.

    Google Scholar 

  • Khosroshahi, M. R. Z., Ashari, E. M., & Fattahi, M. (2008). Effect of exogenous putrescine on postharvest of sweet cherry fruit, cultivar ‘Surati-e Hamedan’. Journal of Applied Horticulture, 10, 154–157.

    Google Scholar 

  • Khosroshahi, M. R. Z., Esna-Ashari, M., & Ershadi, A. (2007). Effect of exogenous putrescine on post-harvest life of strawberry (Fragaria ananassa Duch.) fruit, cultivar Selva. Scientia Horticulturae, 114, 27–32.

    Article  CAS  Google Scholar 

  • Knorr, D., Zenker, M., Heinz, V., & Lee, D. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15, 261–266.

    Article  CAS  Google Scholar 

  • Kramer, G. F., Wang, C. Y., & Conway, W. S. (1991). Inhibition of softening by polyamine application in ‘Golden Delicious’ and ‘Mcintosh’ apples. Journal of the American Society for Horicultural Science, 116(5), 813–817.

    CAS  Google Scholar 

  • Kumar, A., Taylor, M. A., Arif, S. A., & Davies, H. V. (1996). Potato plants expressing antisense and sense SAMDC transgenes show altered levels of polyamines and ethylene: Antisense plants display abnormal phenotypes. The Plant Journal, 9, 147–158.

    Article  CAS  Google Scholar 

  • Kwak, S. H., & Lee, S. H. (2001). The regulation of ornithine decarboxylase gene expression by sucrose and small upstream open reading frame in tomato (Lycopersicon esculentum Mill). Plant and Cell Physiology, 42, 314–323.

    Article  CAS  Google Scholar 

  • Law, D. M., Davies, P. J., & Mutschler, M. A. (1991). Polyamine-induced prolongation of storage in tomato fruits. Plant Growth Regulation, 10, 283–290.

    Article  CAS  Google Scholar 

  • Lee, D. H., Kim, Y. S., & Lee, C. B. (2001). The inductive response of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology, 158, 737–745.

    Article  CAS  Google Scholar 

  • Lee, M. M., Lee, S. H., & Park, K. Y. (1997). Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) during senescence. Journal of Plant Physiology, 151, 68–73.

    Article  CAS  Google Scholar 

  • Leiting, V. A., & Wicker, L. (1997). Inorganic cations and polyamines moderate pectinesterase activity. Journal of Food Science, 62(2), 253–255.

    Article  CAS  Google Scholar 

  • Lelievre, J. M., Latche, A., Jones, B., Bouzayen, M., & Pech, J. C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101, 727–739.

    Article  CAS  Google Scholar 

  • Lester, G. E. (2000). Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Science, 160, 105–112.

    Article  CAS  Google Scholar 

  • Li, N., Parsons, B. L., Liu, D., & Mattoo, A. K. (1992). Accumulation of wound inducible ACC synthase transcript in tomato fruits is inhibited by salicylic acid and polyamines. Plant Molecular Biology, 48, 477–487.

    Article  Google Scholar 

  • Liu, J., Nada, K., Pang, X., Honda, C., Kitashiba, H., & Moriguchi, T. (2006). Role of polyamines in peach fruit development and storage. Tree Physiology, 26, 791–798.

    Article  CAS  Google Scholar 

  • Maharaj, R. (1995). The effect of ultraviolet radiation (UV-C) on the postharvest storage behaviour of tomato (Lycopersicon esculentum Mill, cv. Capello). PhD dissertation. University Laval, Quebec, Canada.

    Google Scholar 

  • Malik, A. U. (2003). Fruitlet abscission and fruit ripening of mango in relation to polyamines. PhD thesis, Curtin University of Technology, Perth Western Australia.

    Google Scholar 

  • Malik, A. U., & Singh, Z. (2004). Endogenous free polyamines of mangos in relation to development and ripening. Journal of the American Society for Horticultural Science, 129(3), 280–286.

    Google Scholar 

  • Malik, A. U., & Singh, Z. (2005). Pre-storage application of polyamines improves shelf-life and fruit quality of mango. Journal of Horticultural Science and Biotechnology, 80, 363–369.

    CAS  Google Scholar 

  • Malik, A. U., & Singh, Z. (2006). Improved fruit retention, yield and fruit quality in mango with exogenous application of polyamines. Scientia Horticulturae, 110, 167–174.

    Article  CAS  Google Scholar 

  • Malik, A. U., Singh, Z., & Dhaliwal, S. S. (2003). Exogenous application of putrescine affects mango fruit quality and shelf life. Acta Horticulturae, 628, 121–127.

    Article  CAS  Google Scholar 

  • Malik, A. U., Singh, Z., & Khan, A. S. (2005). Role of polyamines in fruit development, ripening, chilling injury, storage and quality of mango and other fruits: A review. In A. U. Malik et al. (Eds.), Proceedings: International Conference on Mango and Date Palm: Culture and Export (pp. 181–187). Faisalabad: University of Agriculture.

    Google Scholar 

  • Malik, A. U., Tan, S. C., & Singh, Z. (2006). Exogenous application of polyamines improves shelf life and fruit quality of mango. Acta Horticulturae, 699, 291–296.

    Article  CAS  Google Scholar 

  • Malmberg, R. L., Watson, M. B., Galloway, G. L., Yu, W., & Yu, W. (1998). Molecular genetics analyses of plant polyamines. Critical Reviews in Plant Sciences, 17, 199–224.

    Article  CAS  Google Scholar 

  • Marcilla, A., Zarzo, M., & Rio, M. A. (2006). Effect of storage temperature on the flavour of citrus fruit. Spanish Journal of Agricultural Research, 4(4), 336–344.

    Article  Google Scholar 

  • Martinez-Romero, D., Serrano, M., Carbonell, A., Burgos, L., Riquelme, F., & Valero, D. (2002). Effects of postharvest putrescine treatment on extending shelf life and reducing mechanical damage in apricot. Journal of Food Science, 67(5), 1706–1712.

    Article  CAS  Google Scholar 

  • Martinez-Romero, D., Serrano, M., Carbonell, A., Castillo, S., Riquelme, F., & Valero, D. (2004). Mechanical damage during fruit post-harvest handling: Technical and physiological implications. In R. Dris & S. M. Jain (Eds.), Production practises and quality assessment of food crops (Quality handling and evaluation, Vol. 3, pp. 233–252). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Martinez-Romero, D., Valero, D., Riquelme, F., Zuzunaga, F., Serrano, F., Burlo, F., & Carbonell, A. (2001). Infiltration of putrescine into apricots helps handling and storage. Acta Horticulturae, 189–192.

    Google Scholar 

  • Martinez-Romero, D., Valero, D., Serrano, M., Burlo, F., Carbonell, A., Burgos, L., et al. (2000). Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L) storability improvement. Journal of Food Science, 65, 288–294.

    Article  CAS  Google Scholar 

  • Martin-Tanguy, J. (1997). Conjugated polyamines and reproductive development: Biochemical, molecular and physiological approaches. Physiologia Plantarum, 100, 675–688.

    Article  CAS  Google Scholar 

  • McDonald, R. E. (1989). Temperature conditioning affects polyamines of lemon fruits stored at chilling temperatures. HortScience, 24, 475–477.

    CAS  Google Scholar 

  • Medda, R., Padiglia, A., & Floris, G. (1995). Plant copper-amine oxidases. Phytochemistry, 39, 1–9.

    Article  CAS  Google Scholar 

  • Mehta, R. A., Cassol, T., Li, N., Ali, N., Handa, A. K., & Mattoo, A. K. (2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nature Biotechnology, 20, 613–618.

    Article  CAS  Google Scholar 

  • Miller, A. R. (1992). Physiology, biochemistry and detection of bruising (mechanical stress) in fruits and vegetables. Postharvest News and Information, 3, 53–58.

    Google Scholar 

  • Mirdehghan, S. H., & Rahemi, M. (2002). Reduction of chilling injury in the pomegranate (Punica granatum) fruit by intermittent warming. Iranian Journal of Agricultural Science, 33(1), 75–80.

    Google Scholar 

  • Mirdehghan, S. H., Rahemi, M., Castillo, S., Martinez, R. D., Serrano, M., & Valero, D. (2007). Pre-storage application of polyamines by pressure or immersion improves shelf life of pomegranate stored at chilling temperature by increasing endogenous polyamine levels. Postharvest Biology and Technology, 44, 26–33.

    Article  CAS  Google Scholar 

  • Mithcham, E. J., & Gross, K. C. (1991). Ripening and cell wall synthesis in normal and mutant tomato fruit. Phytochemistry, 30, 1777–1780.

    Article  Google Scholar 

  • Mohammadrezakhani, S., & Pakkish, Z. (2014). Chilling injury induces lipid peroxidation and alters the hydrogen peroxide content in peel and pulp of “Valencia” orange fruit under low temperature storage conditions. Acta Advances in Agricultural Sciences, 2(5), 10–26.

    Google Scholar 

  • Nunes, M. C. N. (2008). Color atlas of postharvest quality of fruits and vegetables. In M. C. N. Nunes (Ed.), (463 p.). Wiley-Blackwell Publishing, Ames, IA, USA

    Google Scholar 

  • Pandey, S., Ranade, S. A., Nagar, P. K., & Kumar, N. (2000). Role of polyamines and ethylene as modulators of plant senescence. Journal of Biosciences, 25(3), 291–299.

    Article  CAS  Google Scholar 

  • Pennazio, S., & Roggero, P. (1990). Exogenous polyamines stimulate ethylene synthesis by soybean leaf tissue. Annals of Botany, 65, 45–50.

    CAS  Google Scholar 

  • Perez-Vicente, A., Martínez-Romero, D., Carbonell, A., Burlo, F., Serrano, M., Valero, D., et al. (2001). Role of exogenous putrescine on the metabolism of conjugated polyamines in mechanically damaged plum during storage. Acta Horticulturae, 553, 193–194.

    Article  CAS  Google Scholar 

  • Perez-Vicente, A., Martínez-Romero, D., Carbonell, A., Serrano, M., Riquelme, F., & Guillen, F. (2002). Role of polyamines in extending shelf life and the reduction of mechanical damage during plum (Prunus salicina Lindl.) storage. Postharvest Biology and Technology, 25, 25–32.

    Article  CAS  Google Scholar 

  • Petkou, I., Pritsa, T., & Sfakiotakis, E. (2003). Effect of dipping and pressure infiltration of putrescine on the propylene induced autocatalytic ethylene production and ripening of ‘Hayward’ kiwi fruit. Acta Horticulturae, 610, 261–266.

    Article  CAS  Google Scholar 

  • Ponappa, T., Scheerens, J. C., & Miller, A. R. (1993). Vacuum infiltration of polyamines increases firmness of strawberry slices under various storage conditions. Journal of Food Science, 58(2), 361–364.

    Article  CAS  Google Scholar 

  • Raeisi, M., Samani, R. B., & Honarvar, M. (2013). Application of exogenous spermidine treatment for reducing of chilling on fruit quality and quantity of Valencia orange var. olinda. International Journal of Farming and Allied Sciences, 2(S), 1292–1297.

    Google Scholar 

  • Ren, X., Ma, F., Wang, F., Ren, X. L., Ma, F. W., & Wang, F. (1995). Effect of spermidine on ethylene and respiration of plum. Plant Physiology Communications, 31, 186–188.

    CAS  Google Scholar 

  • Ritenour, M. A., Dou, H., & McCollum, G. T. (2003). Chilling injury of grapefruit and its control. Horticultural Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. https://edis.ifas.ufl.edu/pdffiles/HS/HS19100.pdf.

  • Roberts, D. R., Dumbroff, E. B., & Thompson, J. E. (1986). Exogenous polyamines alter membrane fluidity in bean leaves—A basis for potential misinterpretation of their physiological role. Planta, 167, 395–401.

    Article  CAS  Google Scholar 

  • Rommero, D. M., Bailen, G., Serrano, M., Guillen, F., Valverdi, J. M., Zapata, P., et al. (2007). Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: A review. Critical Reviews in Food Science and Nutrition, 47, 543–560.

    Article  CAS  Google Scholar 

  • Saftner, R. A., & Baldi, B. G. (1990). Polyamine levels and tomato fruit development: Possible interaction with ethylene. Plant Physiology, 92, 547–550.

    Article  CAS  Google Scholar 

  • Sairam, R. K., & Srivastava, G. C. (2000). Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biologia Plantarum, 43, 381–386.

    Article  CAS  Google Scholar 

  • Serrano, M., Martinez-Madrid, M. C., Martinez, G., Riquelme, F., Pretel, M. T., & Romojaro, F. (1996). Review: Role of polyamines in chilling injury of fruit and vegetables. Food Science and Technology International, 2, 195–199.

    Article  CAS  Google Scholar 

  • Serrano, M., Martinez-Romero, D., Guillen, F., & Valero, D. (2003). Effects of exogenous putrescine on improving shelf life of four plum cultivar. Postharvest Biology and Technology, 30, 259–271.

    Article  CAS  Google Scholar 

  • Seyf, S. N., Abotalebi, A., & Zakerin, A. (2008). Investigation of effect of polyamine and benzyladenine on maintenance of nutritional properties of pomegranate (Punica granatum L.) during storage period. 18th National Congress on Food Technology, Mashhad.

    Google Scholar 

  • Shah, K., Kumar, R. G., Verma, S., & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161, 1135–1144.

    Article  CAS  Google Scholar 

  • Shen, B., Jenson, R. G., & Bohnert, H. J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiology, 115, 527–532.

    CAS  Google Scholar 

  • Siddiqui, M. W. (2015). Postharvest biology and technology of horticultural crops: Principles and practices for quality maintenance (p. 572). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Siddiqui, M. W., Ayala-Zavala, J. F., & Dhua, R. S. (2015). Genotypic variation in tomatoes affecting processing and antioxidant attributes. Critical Reviews in Food Science and Nutrition, 55(13), 1819–1835. doi:10.1080/10408398.2012.710278.

    Article  CAS  Google Scholar 

  • Siddiqui, M. W., Chakraborty, I., Mishra, P., & Hazra, P. (2014). Bioactive attributes of tomatoes possessing dg, ogc, and rin genes. Food & Function, 5, 936–943. doi:10.1039/c3fo60520e.

    Article  CAS  Google Scholar 

  • Siddiqui, M. W., & Dhua, R. S. (2010). Eating artificially ripened fruits is harmful. Current Science, 99(12), 1664–1668.

    CAS  Google Scholar 

  • Siddiqui, M. W., Momin, C. M., Acharya, P., Kabir, J., Debnath, M. K., & Dhua, R. S. (2013). Dynamics of changes in bioactive molecules and antioxidant potential of Capsicum chinense Jacq. cv. Habanero at nine maturity stages. Acta Physiologiae Plantarum, 35(4), 1141–1148. doi:10.1007/s11738-012-1152-2.

    Article  CAS  Google Scholar 

  • Sitrit, Y., & Bennett, A. B. (1998). Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: A re-examination. Plant Physiology, 116, 1145–1150.

    Article  CAS  Google Scholar 

  • Slocum, R. D. (1991). Polyamine biosynthesis in plants. In H. E. Flores & R. D. Slocum (Eds.), Biochemistry and Physiology of Polyamines in Plants (pp. 23–40). Boca Raton: CRC Press.

    Google Scholar 

  • Smith, T. A. (1985). Polyamines. Annual Review of Plant Physiology, 36, 117–143.

    Article  CAS  Google Scholar 

  • Tiburcio, A. F., Campos, J. L., Figueras, X., & Besford, R. T. (1993). Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation, 12, 331–340.

    Article  CAS  Google Scholar 

  • Torrigiani, P., Bregoli, A. M., Ziosi, V., Scaramagli, S., Ciriaci, T., & Rasori, A. (2004). Pre-harvest polyamine and aminoethoxyvinylglycine (AVG) applications modulate fruit ripening in Stark Red Gold nectarines (Prunus persica L. Batsch). Postharvest Biology and Technology, 33, 293–308.

    Article  CAS  Google Scholar 

  • Toumadje, A., & Richardson, D. G. (1988). Endogenouse polyamine concentrations during development, storage and ripening of pear fruits. Phytochemistry, 27, 335–338.

    Article  CAS  Google Scholar 

  • Valero, D., Martinez, D., Riquelme, F., & Serrano, M. (1998). Polyamine response to external mechanical brushing in two mandarin cultivars. HortScience, 33(7), 120–1223.

    Google Scholar 

  • Valero, D., Martinez-Romero, D., & Serrano, M. (2002). The role of polyamines in the improvement of the shelf life of fruit. Trends in Food Science & Technology, 13(6–7), 228–234.

    Article  CAS  Google Scholar 

  • Vergano, P. J., Testin, R. F., Newall, J. R. W. C., & Trezza, T. (1995). Damage loss cost for peach impact bruising. Journal of Food Quality, 18, 265–278.

    Article  Google Scholar 

  • Walheim, L. (2007). Citrus: Complete guide to selecting & growing more than 100 varieties for California, Arizona Texas, the Gulf Coast and Florida (p. 160). Translator: Daneshgar, K. publication of Marze Danesh.

    Google Scholar 

  • Walters, D. R. (2003). Polyamines and plant disease. Phytochemistry, 64, 97–107.

    Article  CAS  Google Scholar 

  • Wang, C. Y. (2010). Alleviation of chilling injury in tropical and subtropical fruits. In M. Souza & R. Drew (Eds.), IIIrd IS on Trop. and Subtrop. Fruits. Acta Hort (p. 864).

    Google Scholar 

  • Wang, C. Y., Conway, W. S., Abbott, J. A., Kramer, G. F., & Sams, C. E. (1993). Postharvest infiltration of polyamines and calcium influences ethylene production and texture changes in ‘Golden Delicious’ apples. Journal of the American Society for Horticultural Science, 118, 801–806.

    CAS  Google Scholar 

  • Winer, L., & Apelbaum, A. (1986). Involvement of polyamines in the development and ripening of avocado fruits. Journal of Plant Physiology, 126, 223–233.

    Article  CAS  Google Scholar 

  • Yahia, E. M. (1998). Modified and controlled atmospheres for tropical fruits. Horticultural Reviews, 22, 123–183.

    Google Scholar 

  • Yoshikawa, H., Honda, C., & Konda, S. (2007). Effect of low-temperature stress on abscisic acid, jasmonates, and polyamine in apples. Plant Growth Regulation, 52, 199–206.

    Article  CAS  Google Scholar 

  • Zhao, Y., Feng, Z., & Li, X. (2007). Effect of ultrasonic and MA packaging method on quality and some physiological changes of fragrant pear. Journal of Xinjiang Agricultural University, 30, 61–63.

    CAS  Google Scholar 

  • Ziosi, V., Scaramagli, S., Bregoli, A. M., Biondi, S., & Torrigiani, P. (2003). Peach (Prunus persica L.) fruit growth and ripening: Transcript levels and activity of polyamine biosynthetic enzymes in the mesocarp. Journal of Plant Physiology, 160, 1109–1115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Wasim Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, P.K., Siddiqui, M.W., Sahay, S. (2016). Polyamines. In: Siddiqui, M., Ayala Zavala, J., Hwang, CA. (eds) Postharvest Management Approaches for Maintaining Quality of Fresh Produce. Springer, Cham. https://doi.org/10.1007/978-3-319-23582-0_5

Download citation

Publish with us

Policies and ethics