Skip to main content

Abstract

Hydrogen sulfide (H2S) has been considered as a phytotoxin for almost 300 years, having deleterious effects on plant growth and survival. However, in recent years, H2S has been added to nitric oxide (NO) and carbon monoxide (CO) as a newly categorized group of biologically active gases termed as gasotransmitters, due to its capacity to control a range of physiological responses. It is recognized that for H2S to have an effect on plants cells it has to be present in a high enough concentration. From the environment or from within are two main sources of H2S in plants. Natural sources include the discharge from volcanoes, coastal marine sediments, or anoxic soils such as found in marshland, while man-made sources include waste treatment installations, agricultural industries, and geothermal power plants. Likewise, intracellular sources of H2S in plants include the production by desulfhydrase enzymes. However, although at present there is no direct evidence that H2S acts as an endogenous regulator or signal molecule in plants, the induction of l-cysteine desulfhydrase upon pathogen attack, emission of H2S from plants exposed to SO2 injury, abiotic stress tolerance in plants supplied with endogenous H2S donor, and its involvement in guard cell signaling and root organogenesis, all suggest that this is indeed the case. Furthermore, endogenous and exogenous postharvest applications of H2S have been used for improvement of shelf life and quality attributes of food products. Recently and for future research, several research groups are focusing on H2S and its role as a signal in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi, R., Asghari, M., Esmaiili, M., & Abdollahi, A. (2013). Postharvest nitric oxide treatment effectively reduced decays of selva strawberry fruit. Nitric Oxide, 3, 5.459.

    Google Scholar 

  • Aiuppa, A., Inguaggiato, S., Mcgonigle, A., O’Dwyer, M., Oppenheimer, C., Padgett, M., et al. (2005). H 2 S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes. Geochimica et Cosmochimica Acta, 69, 1861–1871.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Schlesinger, W. H., & Erisman, J. W. (2008). Farming pollution. Nature Geoscience, 1, 409–411.

    Article  CAS  Google Scholar 

  • Bacci, E., Gaggi, C., Lanzillotti, E., Ferrozzi, S., & Valli, L. (2000). Geothermal power plants at Mt. Amiata (Tuscany–Italy): Mercury and hydrogen sulphide deposition revealed by vegetation. Chemosphere, 40, 907–911.

    Article  CAS  Google Scholar 

  • Beauchamp, R., Bus, J. S., Popp, J. A., Boreiko, C. J., Andjelkovich, D. A., & Leber, P. (1984). A critical review of the literature on hydrogen sulfide toxicity. CRC Critical Reviews in Toxicology, 13, 25–97.

    Article  CAS  Google Scholar 

  • Bloem, E., Haneklaus, S., Kesselmeier, J. R., & Schnug, E. (2012). Sulfur fertilization and fungal infections affect the exchange of H2S and COS from agricultural crops. Journal of Agricultural and Food Chemistry, 60, 7588–7596.

    Article  CAS  Google Scholar 

  • Bloem, E., Riemenschneider, A., Volker, J., Papenbrock, J., Schmidt, A., Salac, I., et al. (2004). Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. Journal of Experimental Botany, 55, 2305–2312.

    Article  CAS  Google Scholar 

  • Chang, Z., Jingying, S., Liqin, Z., Changle, L., & Qingguo, W. (2014). Cooperative effects of hydrogen sulfide and nitric oxide on delaying softening and decay of strawberry. International Journal of Agricultural and Biological Engineering, 7, 114–122.

    Google Scholar 

  • Chen, J., Wu, F.-H., Wang, W.-H., Zheng, C.-J., Lin, G.-H., Dong, X.-J., et al. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 62, 4481–4493.

    Article  CAS  Google Scholar 

  • Cheng, W., Zhang, L., Jiao, C., Su, M., Yang, T., Zhou, L., et al. (2013). Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiology and Biochemistry, 70, 278–286.

    Article  CAS  Google Scholar 

  • Dooley, F. D., Wyllie-Echeverria, S., Roth, M. B., & Ward, P. D. (2013). Tolerance and response of Zostera marina seedlings to hydrogen sulfide. Aquatic Botany, 105, 7–10.

    Article  CAS  Google Scholar 

  • Erwin, D. H. (1993). The great Paleozoic crisis; life and death in the Permian (Critical moments in paleobiology and earth history series). New York: Columbia University Press.

    Google Scholar 

  • Fu, L.-H., Hu, K.-D., Hu, L.-Y., Li, Y.-H., Hu, L.-B., Yan, H., et al. (2014). An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PloS One, 9, e104206.

    Article  Google Scholar 

  • García, I., Castellano, J. M., Vioque, B., Solano, R., Gotor, C., & Romero, L. C. (2010). Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. The Plant Cell Online, 22, 3268–3279.

    Article  Google Scholar 

  • García-Mata, C., & Lamattina, L. (2010). Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytologist, 188, 977–984.

    Article  Google Scholar 

  • González-Aguilar, G. A., Ayala-Zavala, J., Olivas, G., DE LA Rosa, L., & Álvarez-Parrilla, E. (2010). Preserving quality of fresh-cut products using safe technologies. Journal für Verbraucherschutz und Lebensmittelsicherheit, 5, 65–72.

    Article  Google Scholar 

  • Goodman, J. L., Moore, K. A., & Dennison, W. C. (1995). Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquatic Botany, 50, 37–47.

    Article  Google Scholar 

  • Hällgren, J.-E., & Fredriksson, S.-Å. (1982). Emission of hydrogen sulfide from sulfur dioxide-fumigated pine trees. Plant Physiology, 70, 456–459.

    Article  Google Scholar 

  • Hancock, J. T., Lisjak, M., Teklic, T., Wilson, I. D., & Whiteman, M. (2012). Hydrogen sulphide and signalling in plants. Plant Sciences Reviews, 2011, 33.

    Google Scholar 

  • Hansen, M. H., Ingvorsen, K., & Jøgensen, B. B. (1978). Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnology and Oceanography, 23, 68–76.

    Article  CAS  Google Scholar 

  • Hou, Z., Wang, L., Liu, J., Hou, L., & Liu, X. (2013). Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. Journal of Integrative Plant Biology, 55, 277–289.

    Article  CAS  Google Scholar 

  • Hu, L.-Y., Hu, S.-L., Wu, J., Li, Y.-H., Zheng, J.-L., Wei, Z.-J., et al. (2012). Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. Journal of Agricultural and Food Chemistry, 60, 8684–8693.

    Article  CAS  Google Scholar 

  • Hu, H., Shen, W., & Li, P. (2014a). Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. International Journal of Food Science & Technology, 49, 399–409.

    Article  CAS  Google Scholar 

  • Hu, K.-D., Wang, Q., Hu, L.-Y., Gao, S.-P., Wu, J., Li, Y.-H., et al. (2014b). Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (Pyrus pyrifolia) by alleviation of oxidative damage and inhibition of fungal growth. PloS One, 9, e85524.

    Article  Google Scholar 

  • Jin, Z., Shen, J., Qiao, Z., Yang, G., Wang, R., & Pei, Y. (2011). Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 414, 481–486.

    Article  CAS  Google Scholar 

  • Joshi, M., Ibrahim, I., & Hollis, J. (1975). Hydrogen sulfide: Effects on the physiology of rice plants and relation to straighthead disease. Phytopathology, 65, 1165–1170.

    Article  CAS  Google Scholar 

  • Juneja, V. K., Dwivedi, H. P., & Yan, X. (2012). Novel natural food antimicrobials*. Annual Review of Food Science and Technology, 3, 381–403.

    Article  CAS  Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.

    Article  CAS  Google Scholar 

  • Kump, L. R., Pavlov, A., & Arthur, M. A. (2005). Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33, 397–400.

    Article  CAS  Google Scholar 

  • Léon, S., Touraine, B., Briat, J., & Lobréaux, S. (2002). The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochemical Journal, 366, 557–564.

    Article  Google Scholar 

  • Li, Z.-G., Gong, M., Xie, H., Yang, L., & Li, J. (2012). Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca 2+ and calmodulin. Plant Science, 185, 185–189.

    Article  Google Scholar 

  • Li, L., Rose, P., & Moore, P. K. (2011). Hydrogen sulfide and cell signaling. Annual Review of Pharmacology and Toxicology, 51, 169–187.

    Article  CAS  Google Scholar 

  • Li, Z. G., Yang, S. Z., Long, W. B., Yang, G. X., & Shen, Z. Z. (2013). Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide‐induced heat tolerance of maize (Zea mays L.) seedlings. Plant, Cell & Environment, 36, 1564–1572.

    Article  CAS  Google Scholar 

  • Li, Q., Zhang, S., & Mao, Y. (2014). Effect of carbon monoxide on active oxygen metabolism of postharvest jujube. Journal of Food Technology Research, 1, 146–155.

    Google Scholar 

  • Lin, G., & Sternberg, L. D. S. (1992). Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.). Functional Plant Biology, 19, 509–517.

    CAS  Google Scholar 

  • Lisjak, M., Teklić, T., Wilson, I. D., Wood, M., Whiteman, M., & Hancock, J. T. (2011). Hydrogen sulfide effects on stomatal apertures. Plant Signaling & Behavior, 6, 1444–1446.

    Article  CAS  Google Scholar 

  • Liu, J., Hou, L., Liu, G., Liu, X., & Wang, X. (2011a). Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. Chinese Science Bulletin, 56, 3547–3553.

    Article  CAS  Google Scholar 

  • Liu, C., Pan, J., Li, S., Zhao, Y., Wu, L. Y., Berkman, C. E., et al. (2011b). Capture and visualization of hydrogen sulfide by a fluorescent probe. Angewandte Chemie, 123, 10511–10513.

    Article  Google Scholar 

  • Lloyd, D. (2006). Hydrogen sulfide: Clandestine microbial messenger? Trends in Microbiology, 14, 456–462.

    Article  CAS  Google Scholar 

  • Luo, Z., Li, D., Du, R., & Mou, W. (2015). Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae, 183, 144–151.

    Article  CAS  Google Scholar 

  • Mancardi, D., Penna, C., Merlino, A., Del Soldato, P., Wink, D. A., & Pagliaro, P. (2009). Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide. Biochimica et Biophysica Acta-Bioenergetics, 1787, 864–872.

    Article  CAS  Google Scholar 

  • Manjunatha, G., Lokesh, V., & Neelwarne, B. (2010). Nitric oxide in fruit ripening: Trends and opportunities. Biotechnology Advances, 28, 489–499.

    Article  CAS  Google Scholar 

  • Mastromatteo, M., Conte, A., & DEL Nobile, M. (2010). Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Engineering Reviews, 2, 28–38.

    Article  CAS  Google Scholar 

  • Moore, T. C. (1979). Biochemistry and physiology of plant hormones. New York: Springer.

    Book  Google Scholar 

  • Morse, J. W., Millero, F. J., Cornwell, J. C., & Rickard, D. (1987). The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Science Reviews, 24, 1–42.

    Article  CAS  Google Scholar 

  • Nilsen, E. T., & Orcutt, D. M. (1996). Physiology of plants under stress Abiotic factors. New York: John Wiley and Sons Inc.

    Google Scholar 

  • Nishimura, K., Ogawa, T., Ashida, H., & Yokota, A. (2008). Molecular mechanisms of RuBisCO biosynthesis in higher plants. Plant Biotechnology, 25, 285–290.

    Article  CAS  Google Scholar 

  • Oren, A., Padan, E., & Malkin, S. (1979). Sulfide inhibition of photosystem II in cyanobacteria (blue-green algae) and tobacco chloroplasts. Biochimica et Biophysica Acta-Bioenergetics, 546, 270–279.

    Article  CAS  Google Scholar 

  • Papenbrock, J., Riemenschneider, A., Kamp, A., Schulz‐Vogt, H. N., & Schmidt, A. (2007). Characterization of cysteine‐degrading and H2S‐releasing enzymes of higher plants‐from the field to the test tube and back. Plant Biology, 9, 582–588.

    Article  CAS  Google Scholar 

  • Riemenschneider, A., Wegele, R., Schmidt, A., & Papenbrock, J. (2005). Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS Journal, 272, 1291–1304.

    Article  CAS  Google Scholar 

  • Sasakura, K., Hanaoka, K., Shibuya, N., Mikami, Y., Kimura, Y., Komatsu, T., et al. (2011). Development of a highly selective fluorescence probe for hydrogen sulfide. Journal of the American Chemical Society, 133, 18003–18005.

    Article  CAS  Google Scholar 

  • Shi, H., Ye, T., & Chan, Z. (2013). Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry, 71, 226–234.

    Article  CAS  Google Scholar 

  • Smilanick, J., & Sorenson, D. (2001). Control of postharvest decay of citrus fruit with calcium polysulfide. Postharvest Biology and Technology, 21, 157–168.

    Article  CAS  Google Scholar 

  • Stimler, K., Montzka, S. A., Berry, J. A., Rudich, Y., & Yakir, D. (2010). Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytologist, 186, 869–878.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Kihara-Doi, T., Kawazu, T., Miyake, C., & Makino, A. (2010). Differences in Rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant, Cell & Environment, 33, 1314–1323.

    CAS  Google Scholar 

  • Thomas, H., Ougham, H. J., Wagstaff, C., & Stead, A. D. (2003). Defining senescence and death. Journal of Experimental Botany, 54, 1127–1132.

    Article  CAS  Google Scholar 

  • Thompson, C. R., & Kats, G. (1978). Effects of continuous hydrogen sulfide fumigation on crop and forest plants. Environmental Science & Technology, 12, 550–553.

    Article  CAS  Google Scholar 

  • Wang, R. (2003). The gasotransmitter role of hydrogen sulfide. Antioxidants and Redox Signaling, 5, 493–501.

    Article  Google Scholar 

  • Wilson, L. G., Bressan, R. A., & Filner, P. (1978). Light-dependent emission of hydrogen sulfide from plants. Plant Physiology, 61, 184–189.

    Article  CAS  Google Scholar 

  • Wirtz, M., Droux, M., & Hell, R. (2004). O-acetylserine (thiol) lyase: An enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. Journal of Experimental Botany, 55, 1785–1798.

    Article  CAS  Google Scholar 

  • Yamaguchi, K., & Nishimura, M. (2000). Reduction to below threshold levels of glycolate oxidase activities in transgenic tobacco enhances photoinhibition during irradiation. Plant and Cell Physiology, 41, 1397–1406.

    Article  CAS  Google Scholar 

  • Zaharah, S., & Singh, Z. (2011). Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains quality in cold-stored ‘Kensington Pride’ mango. Postharvest Biology and Technology, 60, 202–210.

    Article  CAS  Google Scholar 

  • Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P., & Brutnell, T. P. (2009). High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiology, 149, 195–204.

    Article  CAS  Google Scholar 

  • Zhang, L., DE Schryver, P., DE Gusseme, B., DE Muynck, W., Boon, N., & Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Research, 42, 1–12.

    Article  CAS  Google Scholar 

  • Zhang, H., Hu, S.-L., Zhang, Z.-J., Hu, L.-Y., Jiang, C.-X., Wei, Z.-J., et al. (2011). Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biology and Technology, 60, 251–257.

    Article  CAS  Google Scholar 

  • Zhang, H., Tan, Z. Q., Hu, L. Y., Wang, S. H., Luo, J. P., & Jones, R. L. (2010). Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. Journal of Integrative Plant Biology, 52, 556–567.

    Article  CAS  Google Scholar 

  • Zhang, H., Ye, Y.-K., Wang, S.-H., Luo, J.-P., Tang, J., & Ma, D. F. (2009). Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regulation, 58, 243–250.

    Article  CAS  Google Scholar 

  • Zhu, L., Wang, W., Shi, J., Zhang, W., Shen, Y., Du, H., et al. (2014). Hydrogen sulfide extends the postharvest life and enhances antioxidant activity of kiwifruit during storage. Journal of the Science of Food and Agriculture, 94, 2699–2704.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Ayala-Zavala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quirós-Sauceda, A.E., Velderrain-Rodríguez, G.R., Ovando-Martínez, M., Goñi, M.G., González-Aguilar, G.A., Ayala-Zavala, J.F. (2016). Hydrogen Sulfide. In: Siddiqui, M., Ayala Zavala, J., Hwang, CA. (eds) Postharvest Management Approaches for Maintaining Quality of Fresh Produce. Springer, Cham. https://doi.org/10.1007/978-3-319-23582-0_3

Download citation

Publish with us

Policies and ethics