Skip to main content

Caenorhabditis elegans, a Biological Model for Research in Toxicology

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 237))

Abstract

Caenorhabditis elegans is a nematode widely used as a toxicological model. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. Its use in environmental toxicological assessments allows the determination of multiple endpoints such as lethality, growth, reproduction, and locomotion. Other endpoints use reporter genes, such as GFP, driven by regulatory sequences from genes modulated by different toxicity pathways, such as heat shock responses, oxidative stress, xenobiotic metabolism, and metallothioneins production, among others. C. elegans has allowed the evaluation of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode. Overall, almost every type of known toxicant has been tested with this animal model. In the near future, the available knowledge on the life cycle of C. elegans should allow more studies on reproduction and transgenerational toxicity for newly developed chemicals and materials, as a powerful tool to protect human health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam SA (2009) The nuclear transport machinery in Caenorhabditis elegans: a central role in morphogenesis. Semin Cell Dev Biol 20(5):576–581

    Article  CAS  Google Scholar 

  • Ahn JM, Eom HJ, Yang X, Meyer JN, Choi J (2014) Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode Caenorhabditis elegans. Chemosphere 108:343–352

    Article  CAS  Google Scholar 

  • Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Gutierrez C, Martin JR, Chowdhuri DK, De Pomerai DI (2012) Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology 21(2):439–455

    Article  CAS  Google Scholar 

  • Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Gutierrez C, Martin JR, Chowdhuri DK, De Pomerai DI (2013) Use of transgenic GFP reporter strains of the nematode C. elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology 22(1):72–85

    Article  CAS  Google Scholar 

  • Bodhicharla R, Ryde I, Prasad G, Meyer J (2014) The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces mitochondrial and nuclear DNA damage in Caenorhabditis elegans. Environ Mol Mutagen 55(1):43–50

    Article  CAS  Google Scholar 

  • Boehler C, Raines A, Sunde R (2014) Toxic-selenium and low-selenium transcriptomes in Caenorhabditis elegans: toxic selenium up-regulates oxidoreductase and down-regulates cuticle-associated genes. PLoS One 9(6), e101408

    Article  CAS  Google Scholar 

  • Boyd W, McBride S, Rice J, Snyder D, Freedman J (2010) A high-throughput method for assessing chemical toxicity using a C. elegans reproduction assay. Toxicol Appl Pharmacol 245(2):153–159

    Article  CAS  Google Scholar 

  • Cha Y, Lee J, Choi S (2012) Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans. Chemosphere 87(1):49–54

    Article  CAS  Google Scholar 

  • Chatterjee I, Ibanez C, Vijay P, Singaravelu G, Baldi C, Bair J, Ng S, Smolyanskaya A, Driscoll M, Singson A (2013) Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Exp Gerontol 48(1):1156–1166

    Article  Google Scholar 

  • Chatterjee N, Eom H, Choi J (2014a) Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55(2):122–133

    Article  CAS  Google Scholar 

  • Chatterjee N, Eom H, Jung S, Kim J, Choi J (2014b) Toxic potentiality of bio-oils, from biomass pyrolysis, in cultured cells and Caenorhabditis elegans. Environ Toxicol 29(12):1409–1419

    Article  CAS  Google Scholar 

  • Chen P, Hsiao K, Chou C (2013) Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials 34(22):5661–5669

    Article  CAS  Google Scholar 

  • Cheng Z, Tian H, Chu H, Wu J, Li Y, Wang Y (2014) The effect of tributyltin chloride on Caenorhabditis elegans germline is mediated by a conserved DNA damage checkpoint pathway. Toxicol Lett 225(3):413–421

    Article  CAS  Google Scholar 

  • Collin B, Oostveen E, Tsyusko O, Unrine J (2014) Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48(2):1280–1289

    Article  CAS  Google Scholar 

  • Coulson A, Kozono Y, Lutterbach B, Shownkeen R, Sulston J, Waterston R (1991) YACs and the C. elegans genome. Bioessays 13:413–417

    Article  CAS  Google Scholar 

  • De Pomerai D, Madhamshettiwar P, Anbalagan C, Loose M, Haque M, King J, Chowdhuri D, Sinha P, Johnsen B, Baillie D (2008) The stress-response network in animals: proposals to develop a predictive mathematical model. Open Toxicol J 2:71–76

    Article  Google Scholar 

  • De Pomerai D, Anbalagan C, Lafayette I, Rajagopalan D, Loose M, Haque M, King J (2010) High-throughput analysis of multiple stress pathways using GFP reporters in C. elegans. Environ Toxicol 132:177–187

    Article  CAS  Google Scholar 

  • Dimitriadi M, Hart A (2010) Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans. Neurobiol Dis 40(1):4–11

    Article  CAS  Google Scholar 

  • Diomede L, Di Fede G, Romeo M, Bagnati R, Ghidoni R, Fiordaliso F, Salio M, Rossi A, Catania M, Paterlini A, Benussi L, Bastone A, Stravalaci M, Gobbi M, Tagliavini F, Salmona M (2014) Expression of A2V-mutated Aβ in Caenorhabditis elegans results in oligomer formation and toxicity. Neurobiol Dis 62:521–532

    Article  CAS  Google Scholar 

  • Du M, Wang D (2009) The neurotoxic effects of heavy metal exposure on GABAergic nervous system in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 27(3):314–320

    Article  CAS  Google Scholar 

  • Ellegaard L, Jensen K, Johansen A (2012) Nano-silver induces dose–response effects on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 80(1):216–223

    Article  CAS  Google Scholar 

  • Eom H, Ahn J, Kim Y, Choi J (2013) Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode Caenorhabditis elegans. Toxicol Appl Pharmacol 270(2):106–113

    Article  CAS  Google Scholar 

  • Estevez AO, Morgan KL, Szewczyk NJ, Gems D, Estevez M (2014) The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. NeuroToxicology 41:28–43

    Article  CAS  Google Scholar 

  • Fajardo C, Sacca M, Costa G, Nande M, Martin M (2014) Impact of Ag and Al2O3 nanoparticles on soil organisms: in vitro and soil experiments. Sci Total Environ 473–474:254–261

    Article  CAS  Google Scholar 

  • Finley J, Sandlin C, Holliday D, Keenan M, Prinyawiwatkul W, Zheng J (2013) Legumes reduced intestinal fat deposition in the Caenorhabditis elegans model system. J Funct Foods 5(3):1487–1493

    Article  CAS  Google Scholar 

  • Garcia-Sancho M (2012) From the genetic to the computer program: the historicity of ‘data’ and ‘computation’ in the investigations on the nematode worm C. elegans (1963–1998). Stud Hist Philos Biol Biomed Sci C 43(1):16–28

    Article  Google Scholar 

  • Giles A, Rankin C (2009) Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem 92(2):139–146

    Article  Google Scholar 

  • Gomez J, Svendsen C, Lister L, Martin H, Hodson M, Spurgeon D (2009) Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on C. elegans and Eisenia fetida. Ecotoxicol Environ Saf 72(1):71–79

    Article  CAS  Google Scholar 

  • Guo Y, Yang Y, Wang D (2009) Induction of reproductive deficits in nematode C. elegans exposed to metals at different developmental stages. Reprod Toxicol 28(1):90–95

    Article  CAS  Google Scholar 

  • Hartman P, Barry J, Finstad W, Khan N, Tanaka M, Yasuda K, Ishii N (2014) Ethyl methanesulfonate induces mutations in Caenorhabditis elegans embryos at a high frequency. Mutat Res Fund Mol M 766–767:44–48

    Article  CAS  Google Scholar 

  • Helmcke K, Aschner M (2010) Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 248(2):156–164

    Article  CAS  Google Scholar 

  • Helmcke K, Syversen T, Miller D, Aschner M (2009) Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 240(2):265–272

    Article  CAS  Google Scholar 

  • Hofmann E, Milstein S, Boulton S, Ye M, Hofmann J, Stergiou L, Gartner A, Vidal M, Hengartner M (2002) Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr Biol 12:1908–1918

    Article  CAS  Google Scholar 

  • Höss S, Jänsch S, Moser T, Junker T, Römbke J (2009a) Assessing the toxicity of contaminated soils using the nematode C. elegans as test organism. Ecotoxicol Environ Saf 72(7):1811–1818

    Article  CAS  Google Scholar 

  • Höss S, Haitzer M, Traunspurger W, Steinberg C (2009b) Growth and fertility of C. elegans (nematoda) in unpolluted freshwater sediments: response to particle size distribution and organic content. Environ Toxicol Chem 18(12):2921–2925

    Article  Google Scholar 

  • Höss S, Menzel R, Gessler F, Nguyen H, Jehle J, Traunspurger W (2013) Effects of insecticidal crystal proteins (cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans. Environ Pollut 178:147–151

    Article  CAS  Google Scholar 

  • Höss S, Fritzsche A, Meyer C, Bosch J, Meckenstock RU, Totsche KU (2015) Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans. Environ Sci Technol 49(1):544–552

    Google Scholar 

  • Huffnagle I, Joyner A, Rumble B, Hysa S, Rudel D, Hvastkovs E (2014) Dual electrochemical and physiological apoptosis assay detection of in vivo generated nickel chloride induced DNA damage in Caenorhabditis elegans. Anal Chem 86(16):8418–8424

    Article  CAS  Google Scholar 

  • Hunt P, Olejnik N, Sprando R (2012) Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat. Food Chem Toxicol 50(9):3280–3290

    Google Scholar 

  • Hunt P, Keltner Z, Gao X, Oldenburg S, Bushana P, Olejnik N, Sprando R (2014) Bioactivity of nanosilver in Caenorhabditis elegans: effects of size, coat, and shape. Toxicol Rep 1:923–944

    Google Scholar 

  • Hunter SE, Gustafson MA, Margillo KM, Lee SA, Ryde IT, Meyer JN (2012) In vivo repair of alkylating and oxidative DNA damage in the mitochondrial and nuclear genomes of wild-type and glycosylase-deficient Caenorhabditis elegans. DNA Repair (Amst) 11(11):857–863

    Google Scholar 

  • Jadhav K, Rajini P (2009) Neurophysiological alterations in Caenorhabditis elegans exposed to dichlorvos, an organophosphorus insecticide. Pest Biochem Physiol 94(2–3):79–85

    Article  CAS  Google Scholar 

  • Jones D, Candido E (1999) Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans: relationship to the cellular stress response. J Exp Zool 284:147–157

    Article  CAS  Google Scholar 

  • Ju J, Lieke T, Saul N, Pu Y, Yin L, Kochan C, Putschew A, Baberschke N, Steinberg C (2014) Neurotoxic evaluation of two organobromine model compounds and natural AOBr-containing surface water samples by a Caenorhabditis elegans test. Ecotoxicol Environ Saf 104:194–201

    Article  CAS  Google Scholar 

  • Kamath R, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30(4):313–321

    Article  CAS  Google Scholar 

  • Kim S, Nam S, An Y (2012) Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Saf 77(1):64–70

    Article  CAS  Google Scholar 

  • Kumar S, Aninat C, Michaux G, Morel F (2010) Anticancer drug 5-fluorouracil induces reproductive and developmental defects in Caenorhabditis elegans. Reprod Toxicol 29(4):415–420

    Article  CAS  Google Scholar 

  • Kumarasingha R, Palombo EA, Bhave M, Yeo TC, Lim DS, Tu CL, Shaw JM, Boag PR (2014) Enhancing a search for traditional medicinal plants with anthelmintic action by using wild type and stress reporter Caenorhabditis elegans strains as screening tools. Int J Parasitol 44(5):291–298

    Article  CAS  Google Scholar 

  • L’Hernault S (2009) The genetics and cell biology of spermatogenesis in the nematode Caenorhabditis elegans. Mol Cell Endocrinol 306(1–2):59–65

    Article  CAS  Google Scholar 

  • Leelaja B, Rajini P (2012) Impact of phosphine exposure on development in Caenorhabditis elegans: involvement of oxidative stress and the role of glutathione. Pest Biochem Physiol 104(1):38–43

    Article  CAS  Google Scholar 

  • Leelaja BC, Rajini PS (2013) Biochemical and physiological responses in C. elegans exposed to sublethal concentrations of the organophosphorus insecticide, monocrotophos. Ecotoxicol Environ Saf 94(1):8–13

    Article  CAS  Google Scholar 

  • Leung M, Williams P, Benedetto A, Au C, Helmcke K, Aschner M, Meyer J (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28

    Article  CAS  Google Scholar 

  • Leung M, Goldstone J, Boyd W, Freedman J, Meyer J (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from Aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol Sci 118(2):444–453

    Article  CAS  Google Scholar 

  • Leung C, Deonarine A, Strange K, Choe K (2011) High-throughput screening and biosensing with fluorescent C. elegans strains. J Vis Exp 19(51):2745

    Google Scholar 

  • Lewis J, Gehman E, Baer C, Jackson D (2013) Alterations in gene expression in C. elegans associated with organophosphate pesticide intoxication and recovery. BMC Genomics 14:291

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Yin L, Pu Y, Wang D (2009) Using the nematode C. elegans as a model animal for assessing the toxicity induced by microcystin-LR. J Environ Sci 21(3):395–401

    Article  CAS  Google Scholar 

  • Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D (2012a) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219–220:221–230

    Article  CAS  Google Scholar 

  • Li Q, Zhang S, Yu Y, Wang L, Guan S, Li P (2012b) Toxicity of sodium fluoride to Caenorhabditis elegans. Biomed Environ Sci 25(2):216–223

    CAS  Google Scholar 

  • Li W, Ju Y, Liao C, Liao V (2014) Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans. Ecotoxicology 23(7):1245–1253

    Article  CAS  Google Scholar 

  • Liu P, He K, Li Y, Wu Q, Yang P, Wang D (2012) Exposure to mercury causes formation of male-specific structural deficits by inducing oxidative damage in nematodes. Ecotoxicol Environ Saf 79:90–100

    Article  CAS  Google Scholar 

  • Liu S, Saul N, Pan B, Menzel R, Steinberg C (2013) The non-target organism Caenorhabditis elegans withstands the impact of sulfamethoxazole. Chemosphere 93(10):2373–2380

    Article  CAS  Google Scholar 

  • Lublin AL, Link CD (2013) Alzheimer’s disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity. Drug Discov Today Technol 10(1):e115–e119

    Article  CAS  Google Scholar 

  • Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159(6):1473–1480

    Article  CAS  Google Scholar 

  • MacNeil L, Watson E, Arda HF, Zhu LJ, Walhout A (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153(1):240–252

    Article  CAS  Google Scholar 

  • Matsuura T, Miura H, Nishino A (2013) Inhibition of gustatory plasticity due to acute nicotine exposure in the nematode Caenorhabditis elegans. Neurosci Res 77(3):155–161

    Article  CAS  Google Scholar 

  • Megalou E, Tavernarakis N (2009) Autophagy in Caenorhabditis elegans. BBA Mol Cell Res 1793(9):1444–1451

    CAS  Google Scholar 

  • Menzel R, Yeo H, Rienau S, Li S, Steinberg C, Stürzenbaum S (2007) Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 370(1):1–13

    Article  CAS  Google Scholar 

  • Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg S, Reifferscheid G, Stürzenbaum S (2009) Gene expression profiling to characterize sediment toxicity – a pilot study using C. elegans whole genome microarrays. BMC Genomics 10(160):1–15

    Google Scholar 

  • Meyer D, Williams P (2014) Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. J Toxicol Environ Health B Crit Rev 17(5):284–306

    Article  CAS  Google Scholar 

  • Meyer J, Lord C, Yang X, Turner E, Badireddy A, Marinakos S, Chilkoti A, Wiesner M, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100(2):140–150

    Article  CAS  Google Scholar 

  • Monteiro L, Brinke M, dos Santos G, Traunspurger W, Moens T (2014) Effects of heavy metals on free-living nematodes: a multifaceted approach using growth, reproduction and behavioural assays. Eur J Soil Biol 62:1–7

    Article  CAS  Google Scholar 

  • Moore C, Lein P, Puschner B (2014) Microcystins alter chemotactic behavior in Caenorhabditis elegans by selectively targeting the AWA sensory neuron. Toxins (Basel) 6(6):1813–1836

    Article  CAS  Google Scholar 

  • Nam S, An Y (2010) Assessing the ecotoxicity of vinyl chloride using green alga P. subcapitata, nematode C. elegans, and the SOS chromotest in a closed system without headspace. Sci Total Environ 408(15):3148–3152

    Article  CAS  Google Scholar 

  • Negga R, Rudd D, Davis N, Justice A, Hatfield H, Valente A, Fields A, Fitsanakis V (2011) Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. NeuroToxicology 32(3):331–341

    Article  CAS  Google Scholar 

  • Neu A, Mansson M, Gram L, Prol-García M (2014) Toxicity of bioactive and probiotic marine bacteria and their secondary metabolites in Artemia sp. and Caenorhabditis elegans as eukaryotic model organisms. Appl Environ Microbiol 80(1):146–153

    Article  CAS  Google Scholar 

  • Pang S, Curran S (2014) Adaptive capacity to bacterial diet modulates aging in C. elegans. Cell Metab 19(2):221–231

    Article  CAS  Google Scholar 

  • Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Stürzenbaum SR (2014) Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 160:75–85

    Article  CAS  Google Scholar 

  • Polli J, Zhang Y, Pan X (2014) Dispersed crude oil amplifies germ cell apoptosis in Caenorhabditis elegans, followed a CEP-1-dependent pathway. Arch Toxicol 88(3):543–551

    CAS  Google Scholar 

  • Qiao Y, Zhao Y, Wu Q, Sun L, Ruan Q, Chen Y, Wang M, Duan J, Wang D (2014) Full toxicity assessment of Genkwa Flos and the underlying mechanism in nematode Caenorhabditis elegans. PLoS One 9(3), e91825

    Article  CAS  Google Scholar 

  • Rice J, Boyd W, Chandra D, Smith M, Den Besten P, Freedman J (2014) Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans. Environ Toxicol Chem 33(1):82–88

    Article  CAS  Google Scholar 

  • Roh J, Choi J (2008) Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 71(2):483–489

    Article  CAS  Google Scholar 

  • Roh J, Choi J (2011) Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans. Chemosphere 84(10):1356–1361

    Article  CAS  Google Scholar 

  • Roh J, Park Y, Choi J (2009) A cadmium toxicity assay using stress responsive C. elegans mutant strains. Environ Toxicol Pharmacol 28(3):409–413

    Article  CAS  Google Scholar 

  • Roh J, Park Y, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode C. elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29(2):167–172

    Article  CAS  Google Scholar 

  • Roh J, Lee H, Kwon J (2014) Changes in the expression of cyp35a family genes in the soil nematode Caenorhabditis elegans under controlled exposure to chlorpyrifos using passive dosing. Environ Sci Technol 48(17):10475–10481

    Article  CAS  Google Scholar 

  • Rudel D, Douglas CD, Huffnagle IM, Besser JM, Ingersoll CG (2013) Assaying environmental nickel toxicity using model nematodes. PLoS One 8(10), e77079

    Article  CAS  Google Scholar 

  • Rudgalvyte M, VanDuyn N, Arnaio V, Heikkinen L, Peltonen J, Lakso M, Nass R, Wong G (2013) Methylmercury exposure increases lipocalin related (lpr) and decreases activated in blocked unfolded protein response (abu) genes and specific miRNAs in Caenorhabditis elegans. Toxicol Lett 222(2):189–196

    Article  CAS  Google Scholar 

  • Rui Q, Zhao Y, Wu Q, Tang M, Wang D (2013) Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 93(10):2289–2296

    Article  CAS  Google Scholar 

  • Sacca M, Fajardo C, Costa G, Lobo C, Nande M, Martin M (2014) Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere 104:184–189

    Article  CAS  Google Scholar 

  • Saikia S, Gupta R, Pant A, Pandey R (2014) Genetic revelation of hexavalent chromium toxicity using Caenorhabditis elegans as a biosensor. J Expo Sci Environ Epidemiol 24(2):180–184

    Article  CAS  Google Scholar 

  • Salim C, Rajini P (2014) Glucose feeding during development aggravates the toxicity of the organophosphorus insecticide monocrotophos in the nematode, Caenorhabditis elegans. Physiol Behav 131:142–148

    Article  CAS  Google Scholar 

  • Saul N, Chakrabarti S, Stürzenbaum S, Menzel R, Steinberg C (2014) Neurotoxic action of microcystin-LR is reflected in the transcriptional stress response of Caenorhabditis elegans. Chem Biol Interact 223:51–57

    Article  CAS  Google Scholar 

  • Schäfer P, Müller M, Krüger A, Steinberg CE, Menzel R (2009) Cytochrome P450-dependent metabolism of PCB52 in the nematode Caenorhabditis elegans. Arch Biochem Biophys 488(1):60–68

    Google Scholar 

  • Shashikumar S, Rajini P (2010) Cypermethrin elicited responses in heat shock protein and feeding in Caenorhabditis elegans. Ecotoxicol Environ Saf 73(5):1057–1062

    Article  CAS  Google Scholar 

  • Shen L, Xiao J, Ye H, Wang D (2009) Toxicity evaluation in nematode C. elegans after chronic metal exposure. Environ Toxicol Pharmacol 28(1):125–132

    Article  CAS  Google Scholar 

  • Shi Y, Liao V, Pan T (2012) Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol Med 52(1):109–117

    Article  CAS  Google Scholar 

  • Smith M, Zhang Y, Polli J, Wu H, Zhang B, Xiao P, Farwell M, Pan X (2013) Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod Toxicol 40:69–75

    Article  CAS  Google Scholar 

  • Sobkowiak R, Kowalski M, Lesicki A (2011) Concentration- and time-dependent behavioral changes in Caenorhabditis elegans after exposure to nicotine. Pharmacol Biochem Behav 99(3):365–370

    Article  CAS  Google Scholar 

  • Song S, Guo Y, Zhang X, Zhang X, Zhang J, Ma E (2014) Changes to cuticle surface ultrastructure and some biological functions in the nematode Caenorhabditis elegans exposed to excessive copper. Arch Environ Contam Toxicol 66(3):390–399

    Article  CAS  Google Scholar 

  • Sprando R, Olejnik N, Nese H, Ferguson M (2009) A method to rank order water soluble compounds according to their toxicity using Caenorhabditis elegans, a complex object parametric analyzer and sorter, and axenic liquid media. Food Chem Toxicol 47(4):722–728

    Article  CAS  Google Scholar 

  • Starnes D, Unrine J, Starnes C, Collin B, Oostveen E, Ma R, Lowry G, Bertsch P, Tsyusko O (2015) Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ Pollut 196:239–246

    Article  CAS  Google Scholar 

  • Sulston J, Schierenberg E, White J, Thomson J (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  Google Scholar 

  • Taki F, Pan X, Zhang B (2014) Chronic nicotine exposure systemically alters microRNA expression profiles during post-embryonic stages in Caenorhabditis elegans. J Cell Physiol 229(1):79–89

    CAS  Google Scholar 

  • Turner E, Kroeger G, Arnold M, Thornton B, Di Giulio R, Meyer J (2013) Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans. PLoS One 8(9), e75329

    Article  CAS  Google Scholar 

  • Wang Y, Ezemaduka AN (2014) Combined effect of temperature and zinc on Caenorhabditis elegans wild type and daf-21 mutant strains. J Therm Biol 41:16–20

    Article  CAS  Google Scholar 

  • Wang H, Wick R, Xing B (2009a) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode C elegans. Environ Pollut 157(4):1171–1177

    Article  CAS  Google Scholar 

  • Wang S, Wu L, Wang Y, Luo X, Lu X (2009b) Copper-induced germline apoptosis in Caenorhabditis elegans: the independent roles of DNA damage response signaling and the dependent roles of MAPK cascades. Chem Biol Interact 180(2):151–157

    Article  CAS  Google Scholar 

  • Wang D, Liu P, Yang Y, Shen L (2010a) Formation of a combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 73(6):1221–1230

    Article  CAS  Google Scholar 

  • Wang D, Wang Y, Shen L (2010b) Confirmation of combinational effects of calcium with other metals in a paper recycling mill effluent on nematode lifespan with toxicity identification evaluation method. J Environ Sci 22(5):731–737

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Luo X, Yang Y, Jian F, Wang X, Xie L (2014a) The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans. Chemosphere 108:231–238

    Article  CAS  Google Scholar 

  • Wang Y, Xu S, Liu J, Zhang Y, Guo T (2014b) Regulation of lead toxicity by heat shock protein 90 (daf-21) is affected by temperature in Caenorhabditis elegans. Ecotoxicol Environ Saf 104:317–322

    Article  CAS  Google Scholar 

  • Wang S, Teng X, Wang Y, Yu H, Luo X, Xu A, Wu L (2014c) Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: roles of insulin-like growth factor-1 signaling pathway. Chemosphere 112:248–255

    Article  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340

    Google Scholar 

  • Williams P, Dusenbery D (1990) Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ Toxicol Chem 9(10):1285–1290

    Article  CAS  Google Scholar 

  • Wu Q, He K, Liu P, Li X, Wang D (2011) Association of oxidative stress with the formation of reproductive toxicity from mercury exposure on hermaphrodite nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 32(2):175–184

    Article  CAS  Google Scholar 

  • Wu Q, Qu Y, Li X, Wang D (2012a) Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. Chemosphere 87(11):1281–1287

    Article  CAS  Google Scholar 

  • Wu H, Zhao Y, Guo Y, Xu L, Zhao B (2012b) Significant longevity-extending effects of a tetrapeptide from maize on C. elegans under stress. Food Chem 130(2):254–260

    Article  CAS  Google Scholar 

  • Wu Q, Wang W, Li Y, Ye B, Tang M, Wang D (2012c) Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. J Hazard Mater 243:161–168

    Article  CAS  Google Scholar 

  • Wu Q, Nouara A, Li Y, Zhang M, Wang W, Tang M, Ye B, Ding J, Wang D (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90(3):1123–1131

    Article  CAS  Google Scholar 

  • Wu Q, Zhao Y, Zhao G, Wang D (2014a) microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. Nanomedicine 10(7):1401–1410

    Article  CAS  Google Scholar 

  • Wu Q, Zhao Y, Zhao G, Wang D (2014b) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine 10(6):1263–1271

    Article  CAS  Google Scholar 

  • Xiao J, Rui R, Guo Y, Chang X, Wang D (2009) Prolonged manganese exposure induces severe deficits in lifespan, development and reproduction possibly by altering oxidative stress response in Caenorhabditis elegans. J Environ Sci 21(6):842–848

    Article  CAS  Google Scholar 

  • Xing X, Guo Y, Wang D (2009a) Using the larvae nematode C. elegans to evaluate neurobehavioral toxicity to metallic salts. Ecotoxicol Environ Saf 72(7):1819–1823

    Article  CAS  Google Scholar 

  • Xing X, Du M, Xu M, Rui Q, Wang D (2009b) Exposure to metals induces morphological and functional alteration of AFD neurons in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 28(1):104–110

    Article  CAS  Google Scholar 

  • Y H, Wang Y, Ye B, Wang D (2008) Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomed Environ Sci 21(6):467–473

    Article  Google Scholar 

  • Yang X, Jiang C, Hsu-Kim H, Badireddy A, Dykstra M, Wiesner M, Hinton D, Meyer J (2014) Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48(6):3486–3495

    Article  CAS  Google Scholar 

  • Yu Z, Jiang L, Yin D (2011) Behavior toxicity to C. elegans transferred to the progeny after exposure to sulfamethoxazole at environmentally relevant concentrations. J Environ Sci 23(2):294–300

    Article  CAS  Google Scholar 

  • Yu Z, Chen X, Zhang J, Wang R, Yin D (2013a) Transgenerational effects of heavy metals on L3 larva of C. elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicol Environ Saf 88(1):78–184

    Google Scholar 

  • Yu Z, Chen X, Zhang J, Yin D, Deng H (2013b) Inhibitions on the behavior and growth of the nematode progeny after prenatal exposure to sulfonamides at micromolar concentrations. J Hazard Mater 250–251:198–203

    Article  CAS  Google Scholar 

  • Yu Z, Yin D, Deng H (2015) The combinational effects between sulfonamides and metals on nematode Caenorhabditis elegans. Ecotoxicol Environ Safe 111:66–71

    Article  CAS  Google Scholar 

  • Zhao Y, Wu Q, Tang M, Wang D (2014a) The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomedicine 10(1):89–98

    Article  CAS  Google Scholar 

  • Zhao Y, Lin Z, Jia R, Li G, Xi Z, Wang D (2014b) Transgenerational effects of traffic-related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J Hazard Mater 274:106–114

    Article  CAS  Google Scholar 

  • Zhao Y, Wang X, Wu Q, Li Y, Wang D (2015) Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans. J Hazard Mater 283:480–489

    Article  CAS  Google Scholar 

  • Zhuang Z, Zhao Y, Wu Q, Li M, Liu H, Sun L, Gao W, Wang D (2014) Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism. PLoS One 9(1):e85482

    Article  CAS  Google Scholar 

  • Zong Y, Gao J, Feng H, Cheng B, Zhang X (2014) Toxicity of 7-ketocholesterol on lethality, growth, reproduction, and germline apoptosis in the nematode Caenorhabditis elegans. J Toxicol Environ Health A 77(12):716–723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Vice-Rectory for Research of the University of Cartagena for its financial aid and to Carson Ward, visitor student from Purdue University, for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Olivero-Verbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tejeda-Benitez, L., Olivero-Verbel, J. (2016). Caenorhabditis elegans, a Biological Model for Research in Toxicology. In: de Voogt, W. (eds) Reviews of Environmental Contamination and Toxicology Volume 237. Reviews of Environmental Contamination and Toxicology, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-23573-8_1

Download citation

Publish with us

Policies and ethics