Skip to main content

On Bifurcation Analysis of Implicitly Given Functionals in the Theory of Elastic Stability

  • Chapter
  • First Online:
Book cover Mathematical Modeling and Optimization of Complex Structures

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 40))

Abstract

In this paper, we analyze the stability and bifurcation of elastic systems using a general scheme developed for problems with implicitly given functionals. An asymptotic property for the behaviour of the natural frequency curves in the small vicinity of each bifurcation point is obtained for the considered class of systems. Two examples are given. First is the stability analysis of an axially moving elastic panel, with no external applied tension, performing transverse vibrations. The second is the free vibration problem of a stationary compressed panel. The approach is applicable to a class of problems in mechanics, for example in elasticity, aeroelasticity and axially moving materials (such as paper making or band saw blades).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Euler, De motu vibratorio tympanorum. Novi Commentarii academiae scientiarum imperialis Petropolitanae 10, 243–260 (1766)

    Google Scholar 

  2. V.V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability (Pergamon Press, New York, 1963)

    MATH  Google Scholar 

  3. C.D. Mote Jr, J.A. Wickert, Response and discretization methods for axially moving materials. Appl. Mech. Rev. 44(11), S279–S284 (1991)

    Google Scholar 

  4. N. Banichuk, J. Jeronen, M. Kurki, P. Neittaanmäki, T. Saksa, T. Tuovinen, On the limit velocity and buckling phenomena of axially moving orthotropic membranes and plates. Int. J. Solids Struct. 48(13), 2015–2025 (2011)

    Article  Google Scholar 

  5. N. Banichuk, J. Jeronen, P. Neittaanmäki, T. Saksa, T. Tuovinen, Theoretical study on travelling web dynamics and instability under non-homogeneous tension. Int. J. Mech. Sci. 66C, 132–140 (2013)

    Article  Google Scholar 

  6. N. Banichuk, J. Jeronen, P. Neittaanmäki, T. Tuovinen, Dynamic behaviour of an axially moving plate undergoing small cylindrical deformation submerged in axially flowing ideal fluid. J. Fluids Struct. 27(7), 986–1005 (2011)

    Article  Google Scholar 

  7. N. Banichuk, M. Kurki, P. Neittaanmäki, T. Saksa, M. Tirronen, T. Tuovinen, Optimization and analysis of processes with moving materials subjected to fatigue fracture and instability. Mech. Based Des. Struct. Mach. Int. J. 41(2), 146–167 (2013)

    Article  Google Scholar 

  8. R. Skutch, Uber die Bewegung eines gespannten Fadens, weicher gezwungen ist durch zwei feste Punkte, mit einer constanten Geschwindigkeit zu gehen, und zwischen denselben in Transversal-schwingungen von gerlinger Amplitude versetzt wird. Annalen der Physik und Chemie 61, 190–195 (1897)

    Article  Google Scholar 

  9. W.L. Miranker, The wave equation in a medium in motion. IBM J. Res. Dev. 4, 36–42 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.A. Sack, Transverse oscillations in traveling strings. Br. J. Appl. Phys. 5, 224–226 (1954)

    Article  Google Scholar 

  11. R.D. Swope, W.F. Ames, Vibrations of a moving threadline. J. Franklin Inst. 275, 36–55 (1963)

    Article  Google Scholar 

  12. C.D. Mote, Dynamic stability of axially moving materials. Shock Vibr. Digest 4(4), 2–11 (1972)

    Article  Google Scholar 

  13. F.R. Archibald, A.G. Emslie, The vibration of a string having a uniform motion along its length. ASME J. Appl. Mech. 25, 347–348 (1958)

    MATH  Google Scholar 

  14. A. Simpson, Transverse modes and frequencies of beams translating between fixed end supports. J. Mech. Eng. Sci. 15, 159–164 (1973)

    Article  Google Scholar 

  15. Y. Wang, L. Huang, X. Liu, Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics. Acta. Mech. Sin. 21, 485–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.A. Wickert, Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27(3), 503–517 (1992)

    Article  MATH  Google Scholar 

  17. C.C. Lin, Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34(24), 3179–3190 (1997)

    Article  MATH  Google Scholar 

  18. J.Y. Shen, L. Sharpe, W.M. McGinley, Identification of dynamic properties of plate-like structures by using a continuum model. Mech. Res. Commun. 22(1), 67–78 (1995)

    Article  MATH  Google Scholar 

  19. C. Shin, J. Chung, W. Kim, Dynamic characteristics of the out-of-plane vibration for an axially moving membrane. J. Sound Vib. 286(4–5), 1019–1031 (2005)

    Article  MATH  Google Scholar 

  20. A. Kulachenko, P. Gradin, H. Koivurova, Modelling the dynamical behaviour of a paper web. Part I. Comput. Struct. 85, 131–147 (2007)

    Article  Google Scholar 

  21. A. Kulachenko, P. Gradin, H. Koivurova, Modelling the dynamical behaviour of a paper web. Part II. Comput. Struct. 85, 148–157 (2007)

    Article  Google Scholar 

  22. R. Sygulski, Stability of membrane in low subsonic flow. Int. J. Non-Linear Mech. 42(1), 196–202 (2007)

    Article  MATH  Google Scholar 

  23. X. Wang, Instability analysis of some fluid-structure interaction problems. Comput. Fluids 32(1), 121–138 (2003)

    Article  MATH  Google Scholar 

  24. K. Marynowski, Non-linear dynamic analysis of an axially moving viscoelastic beam. J. Theor. Appl. Mech. 2(40), 465–482 (2002)

    Google Scholar 

  25. K. Marynowski, Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension. Chaos Solitons Fractals 21(2), 481–490 (2004). doi:10.1016/j.chaos.2003.12.020

    Article  MATH  Google Scholar 

  26. K. Marynowski, Non-linear vibrations of the axially moving paper web. J. Theor. Appl. Mech. 46(3), 565–580 (2008)

    Google Scholar 

  27. X.-D. Yang, L.-Q. Chen, Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos Solitons Fractals 23(1), 249–258 (2005)

    Article  MATH  Google Scholar 

  28. F. Pellicano, F. Vestroni, Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122(1), 21–30 (2000)

    Article  Google Scholar 

  29. M.H. Ghayesh, M. Amabili, M.P. Païdoussis, Nonlinear dynamics of axially moving plates. J. Sound Vib. 332(2), 391–406 (2013)

    Article  Google Scholar 

  30. P. Neittaanmäki, K. Ruotsalainen, On the numerical solution of the bifurcation problem for the sine-Gordon equation. Arab J. Math. 6(1 and 2) (1985)

    Google Scholar 

  31. J. Nečas, A. Lehtonen, P. Neittaanmäki, On the construction of Lusternik-Schnirelmann critical values with application to bifurcation problems. Appl. Anal. 25(4), 253–268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Rektorys, Survey of Applicable Mathematics (Iliffe Books London Ltd, 1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Banichuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banichuk, N., Barsuk, A., Jeronen, J., Neittaanmäki, P., Tuovinen, T. (2016). On Bifurcation Analysis of Implicitly Given Functionals in the Theory of Elastic Stability. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds) Mathematical Modeling and Optimization of Complex Structures. Computational Methods in Applied Sciences, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-23564-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23564-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23563-9

  • Online ISBN: 978-3-319-23564-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics