Skip to main content

Overview of Drug Development and Statistical Tools for Manufacturing and Testing

  • Chapter
Nonclinical Statistics for Pharmaceutical and Biotechnology Industries

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

An essential part of the application for marketing approval of a new drug or therapeutic biological product submitted to regulatory authorities is the Chemistry Manufacturing and Controls (CMC) section. It presents the sponsor company’s documentation of sufficient scientific and engineering knowledge to manufacture the product with consistent quality that provides defined clinical efficacy with an acceptable safety profile. The CMC section includes three main parts: (1) Chemical Development (synthesis of a new molecular entity (NME), purification of a new biologic entity (NBE); (2) Pharmaceutical Development (comprised of formulation and process development); (3) Analytical Development (analytical methods for physical, chemical, biological characterization). Specifications are established during development and constitute an important part of the CMC section in defining the product’s quality requirements. This chapter provides an overview of the drug development process, and some statistical tools useful in support of CMC studies. This chapter aims to set the stage for the subsequent 11 chapters in the CMC section of this book which delve in greater detail into important CMC related statistical topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A division of NMEs into large and small molecules is commonly found in the CMC literature. Small molecules are the classical drug mainly chemically synthesized. They are easily manufactured as tablets or capsules. Biological NMEs such as monoclonal antibodies are proteins that are either identical to or closely match endogenous proteins that play a key role in a disease process. They are manufactured as an injection or an infusion typically. Although small molecule drugs still make up 90 % of the drugs on the market, large molecule biological products are becoming increasingly more important.

References

  • Altan S, Shoung J (2008) Block designs in method transfer experiments. J Biopharm Stat 18: 996–1004

    Article  MathSciNet  Google Scholar 

  • Altan S, Manola A, Davidian M, Raghavarao D (2002) The constrained four parameter logistic model. Dev Biol Standard 107:71–76

    Google Scholar 

  • ASTM E2655-14 (2014) Standard guide for reporting uncertainty of test results and use of the term measurement uncertainty in ASTM test methods. ASTM International, West Conshohocken. www.astm.org

  • Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing – probability models. Holt, Rinehart, and Winston, Inc., New York

    Google Scholar 

  • Bernardo JM, Irony TZ (1996) A general multivariate Bayesian process capability index. Statistician 45:487–502

    Article  Google Scholar 

  • Box GEP, Behnken DW (1960) Some new three-level designs for the study of quantitative variables. Technometrics 2:455–475

    Article  MathSciNet  Google Scholar 

  • Breyfogle FW (2003) Implementing six sigma, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Castagnoli C, Yahyah M, Cimarosti Z, Peterson JJ (2010) Application of quality by design prinicpals for the definition of a robust crystallization process for casopitant mesylate. Org Process Res Dev 14(6):1407–1419

    Article  Google Scholar 

  • Chatzizaharia KA, Hatziavramidis TD (2015) Dissolution efficiency and design space for an oral pharmaceutical product in tablet form. Ind Eng Chem Res. doi:10.1021/ie5050567

    Google Scholar 

  • Chavez P-F, Lebrun P, Sacré P-Y, De Bleye C, Netchacovitch L, Cuypers S, Mantanus J, Motte H, Schubert M, Evrard B, Hubert P, Ziemons E (2015) Optimization of a pharmaceutical tablet formulation based on a design space approach and using vibrational spectroscopy as PAT tool. Int J Pharm 486:13–20

    Article  Google Scholar 

  • Chiao C, Hamada M (2001) Analyzing experiments with correlated multiple responses. J Qual Technol 33:451–465

    Google Scholar 

  • Cho BR, Shin S (2012) Quality improvement and robust design methods to a pharmaceutical research and development. Math Prob Eng. http://dx.doi.org/10.1155/2012/193246

  • Cornell JA (2002) Experiments with mixtures – designs, models, and the analysis of mixture data, 3rd edn. Wiley, New York

    Google Scholar 

  • Crump BR, Goss C, Lovelace T, Lewis R, Peterson J (2013) Influence of reaction parameters on the first principles reaction rate modeling of a nitro reduction. Org Process Res Dev 17(10): 1277–1286

    Article  Google Scholar 

  • Davidian M, Giltinan D (1993) Some simple methods for estimating intra-individual variability in nonlinear mixed effects models. Biometrics 49:59–73

    Article  Google Scholar 

  • Del Castillo E (2007) Process optimization—a statistical approach. Springer, New York

    Book  MATH  Google Scholar 

  • Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Google Scholar 

  • Dispas A, Lebrun P, Andri B, Rozet E, Hubert P (2014a) Robust method optimization strategy— a useful tool for method transfer: the case of SFC. J Pharm Biomed Anal 88:519–524

    Article  Google Scholar 

  • Dispas A, Lebrun P, Ziemons E, Marini R, Rozet E, Hubert PH (2014) Evaluation of the quantitative performances of supercritical fluidchromatography: from method development to validation. J Chromatogr A 1353:78–88

    Google Scholar 

  • Draper NR (1963) Ridge analysis of response surfaces. Technometrics 5:469–479

    MATH  Google Scholar 

  • Food and Drug Administration (2011) Center for drugs evaluation research. Guidance for industry process validation: general principles and practices. http://www.fda.gov/downloads/Drugs/Guidances/UCM070336.pdf

    Google Scholar 

  • FDA (2015a) Pharmaceutical quality/manufacturing standards (CGMP) http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064971.htm

  • FDA (2015b) Pharmaceutical cGMPS for the 21st century — a risk-based approach: second progress report and implementation plan. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/Manufacturing/QuestionsandAnswersonCurrentGoodManufacturingPracticescGMPforDrugs/UCM071836

  • FDA (2015c) CFR – code of federal regulations title 21. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm

  • Finney DJ (1978) Statistical method in biological assay, 3rd edn. Charles Griffin, New York

    Google Scholar 

  • Garcìa A, Gilabert E (2011) Mapping FMEA into Bayesian networks. Int J Performability Eng 7(6):525–537

    Google Scholar 

  • Giltinan D (1998) Statistical issues in assay development and use. Adv Exp Med Biol 445:173–190

    Article  Google Scholar 

  • Giltinan DM, Ruppert D (1989) Fitting heteroscedastic regression models to individual pharmacokinetic data using standard statistical software. J Pharmacokinet Biopharm 17:601–614

    Article  Google Scholar 

  • Gong X, Chen H, Pan J, Qu H (2015) Optimization of Panax notoginseng extraction process using a design space approach. Sep Purif Technol 141:197–206

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33(2):1–22

    Article  Google Scholar 

  • Harrington EC (1965) The desirability function. Ind Qual Control 21:494–498

    Google Scholar 

  • Hoerl A (1964) Ridge analysis. Chem Eng Symp Ser 60:67–77

    Google Scholar 

  • Hubert C, LeBrun P, Houari S, Ziemons E, Rozet E, Hubert P (2014) Improvement of a stability-indicating method by quality-by-design versus quality-by-testing: a case of a learning process. J Pharm Biomed Anal 88:401–409

    Article  Google Scholar 

  • International Society of Professional Engineers (2015) Quality metrics summit: driving quality through data and knowledge. Baltimore. http://www.ispe.org/2015-quality-metrics-summit

  • Jones B, Nachtsheim CJ (2011) A class of three-level designs for definitive screening in the presence of second-order effects. J Qual Technol 43(1):1–15

    MATH  MathSciNet  Google Scholar 

  • Juran JM (1988) Juran on planning for quality. The Free Press, New York

    Google Scholar 

  • Kenett RS, Zacks S (2014) Modern industrial statistics: with applications in R, MINITAB and JMP. Wiley, Chichester

    Google Scholar 

  • Kotz S, Johnson NL (2002) Process capability indices – a review, 1992–2000. J Qual Technol 34(1):2–19

    Google Scholar 

  • Lansky D (1999) Validation of bioassays for quality control. Brown F, Mire-Sluis AR (eds): biological characterization and assay of cytokines and growth factors. Dev Biol Stand Basel, Karger 97:157–168

    Google Scholar 

  • Lansky D (2002) Strip plot designs, mixed models, and comparisons between linear and non-linear models in microtitre plate bioassays. Dev Biol Stand 107:11–23

    Google Scholar 

  • Lansky D (2014) Near-universal similarity bounds for bioassays. In: Conference on statistical and data management approaches for biotechnology drug development, August 27–28, 2014, Rockville, MD

    Google Scholar 

  • LeBlond D, Mockus L (2014) The posterior probability of passing a compendial standard, part 1: uniformity of dosage units. Stat Biopharm Res 6(3):270–286

    Article  Google Scholar 

  • LeBlond D, Altan S, Novick S, Peterson J, Shen Y, Yang H (2015) In-vitro dissolution curve comparisons: a critique of current practice. Dissolut Technol, To appear http://www.qualitydigest.com/inside/quality-insider-article/problems-risk-priority-numbers.html

  • Lebrun P, Krier F, Mantanus J, Grohganz H, Yang M, Rozet E, Boulanger B, Evrard B, Rantanen J, Hubert P (2012) Design space approach in the optimization of the spray-drying process. Eur J Pharm Biopharm 80:226–234

    Article  Google Scholar 

  • Lebrun P, Boulanger B, Debrus B, Lambert P, Hubert P (2013) A Bayesian design space for analytical methods based on multivariate models and predictions. J Biopharm Stat 23(6): 1330–1351

    Article  MathSciNet  Google Scholar 

  • Lebrun P, Giacoletti K, Scherder T, Rozet E, Boulanger B (2015) A quality by design approach for longitudinal quality attributes. J Biopharm Stat 25:247–259

    Article  MathSciNet  Google Scholar 

  • Lostritto R (2014) Clinically relevant specifications (CRS): a regulatory perspective. IFPAC Conference, Baltimore

    Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Maeda J, Suzuki T, Takayama K (2012) Novel method for constructing a large-scale design space in lubrication process by using Bayesian estimation based on the reliability of a scale-up rule. Chem Pharm Bull 60(9):1155–1163

    Article  Google Scholar 

  • Marroum PJ (2012) Clinically relevant dissolution methods and specifications. http://www.americanpharmaceuticalreview.com/Featured-Articles/38389-Clinically-Relevant-Dissolution-Methods-and-Specifications/

  • Mbinze JK, Lebrun P, Debrus B, Dispas A, Kalenda N, Mavar Tayey Mbay J, Schofield T, Boulanger B, Rozet E, Huberta P, Marini RD (2012) Application of an innovative design space optimization strategy to the development of liquid chromatographic methods to combat potentially counterfeit nonsteroidal anti-inflammatory drugs. J Chromatogr A 1263:113–124

    Article  Google Scholar 

  • Miró-Quesada G, del Castillo E, Peterson JJ (2004) A Bayesian approach for multiple response surface optimization in the presence of noise variables. J Appl Stat 31:251–270

    Article  MATH  MathSciNet  Google Scholar 

  • Mockus L, Peterson JJ, Lainez JM, Reklaitis GV (2014) Batch-to-batch variation: a key component for modeling chemical manufacturing processes. Org Process Res Dev. doi:10.1021/op500244f

    Google Scholar 

  • Montgomery DC (2009) Introduction to statistical quality control, 6th edn. Wiley, Hoboken

    Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology - product and process optimization using designed experiments, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Nelson PR (1992) Editorial. J Qual Technol 24(4):175

    Google Scholar 

  • Ng SH (2010) A Bayesian model averaging approach to multiple-response optimization. J Qual Technol 42(1):52–68

    Google Scholar 

  • Novick SJ, Chiswell K, Peterson JJ (2011) A Bayesian approach to show assay equivalence with replicate responses over a specified concentration range. Stat Biopharm Res 4(2):102–117

    Article  Google Scholar 

  • Novick SJ, Yang H, Peterson JJ (2012) A Bayesian approach to parallelism in testing in bioassay. Stat Biopharm Res 4(4):357–374

    Article  Google Scholar 

  • Novick SJ, Shen Y, Yang H, Peterson JJ, LeBlond D, Altan S (2015) Dissolution curve comparisons through the F2 parameter, a Bayesian extension of the f2 statistic. J Biopharm Stat 25(2): 351–371

    Article  MathSciNet  Google Scholar 

  • O’Connell MA, Belanger BA, Haaland PD (1993) Calibration and assay development using the four-parameter logistic model. Chemometr Intell Lab Syst 20:97–114

    Article  Google Scholar 

  • Percy DF (1992) Prediction for seemingly unrelated regressions. J R Stat Soc Ser B 54:243–252

    Google Scholar 

  • Peterson JJ (1993) A general approach to ridge analysis with confidence intervals. Technometrics 35:204–214

    Article  MATH  MathSciNet  Google Scholar 

  • Peterson JJ (2004) A posterior predictive approach to multiple response surface optimization. J Qual Technol 36:139–153

    Google Scholar 

  • Peterson JJ (2008) A Bayesian approach to the ICH Q8 definition of design space. J Biopharm Stat 18:959–975

    Article  Google Scholar 

  • Peterson JJ (2009) What your ICH Q8 design space needs: a multivariate predictive distribution. Pharm Manuf 8(10):23–28

    Google Scholar 

  • Peterson J, Kenett R (2011) Modeling opportunities for statisticians supporting quality by design efforts for pharmaceutical development & manufacturing. Biopharm Rep 8(2):6–16

    Google Scholar 

  • Peterson JJ, Lief K (2010) The ICH Q8 definition of design space: a comparison of the overlapping means and the bayesian predictive approaches. Stat Biopharm Res 2:249–259

    Article  Google Scholar 

  • Peterson JJ, Yahyah M (2009) A Bayesian design space approach to robustness and system suitability for pharmaceutical assays and other processes. Stat Biopharm Res 1(4):441–449

    Article  Google Scholar 

  • Peterson JJ, Snee RD, McAllister PR, Schofield TL, Carella AJ (2009a) Statistics in the pharmaceutical development and manufacturing (with discussion). J Qual Technol 41:111–147

    Google Scholar 

  • Peterson JJ, Miro-Quesada G, del Castillo E (2009b) A Bayesian reliability approach to multiple response optimization with seemingly unrelated regression models. J Qual Technol Quant Manag 6(4):353–369

    Google Scholar 

  • Press SJ (2003) Subjective and objective Bayesian statistics, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Q10 Pharmaceutical Quality System (2009) International conference on harmonizaiton, guidance for industry. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073517.pdf

  • Q8(R2) Pharmaceutical Development (2009) International conference on harmonizaiton guidance for industry. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf

  • Q9 Quality Risk Management (2006) International conference on harmonizaiton, guidance for industry. http://www.fda.gov/downloads/Drugs/Guidances/ucm073511.pdf

  • Rajagopal R, del Castillo E (2005) Model-robust process optimization using Bayesian model averaging. Technometrics 47(2):152–163

    Article  MathSciNet  Google Scholar 

  • Rajagopal R, del Castillo E, Peterson JJ (2005) Model and distribution-robust process optimization with noise factors. J Qual Technol 37:210–222; Corrigendum 38, p 83

    Google Scholar 

  • Rodbard D, Lenox RH, Wray HL, Ramaith D (1994) Statistical quality control and routine data processing for radioimmunoassay. Clin Chem 20/10:1255–1270

    Google Scholar 

  • Rossi P (2012) Bayesm: Bayesian inference for marketing/micro-econometrics. R package version 2.2-5. http://CRAN.R-project.org/package=bayesm

  • Rozet E, Lebrun P, Debrus B, Philippe Hubert P (2012) New methodology for the development of chromatographic methods with bioanalytical application. Bioanalysis 4(7):755–758

    Article  Google Scholar 

  • Rozet E, Lebrun P, Michiels J-F, Sondag P, Scherder T, Boulanger B (2015) Analytical procedure validation and the quality by design paradigm. J Biopharm Stat 25:260–268

    Google Scholar 

  • Scranton R, Runger GC, Keats JB, Montgomery DC (1996) Efficient shift detection using exponentially weighted moving average control charts and principal components. Qual Reliab Eng Int 12(3):165–172

    Article  Google Scholar 

  • Sharp SS (2012) Establishing clinically relevant drug product specifications: FDA perspective FDA/ONDQA/biopharmaceutics 2012 AAPS annual meeting and exposition, Chicago, IL. http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/UCM341185.pdf

  • Shin S, Truong NKV, Goethals PL, Cho BR, Jeong SH (2014) Robust design modeling and optimization of a multi-response time series for a pharmaceutical process. Int J Adv Manuf Technol 74:1017–1031

    Google Scholar 

  • Srivastava VK, Giles DEA (1987) Seemingly unrelated regression equations models. Marcel Dekker, New York

    MATH  Google Scholar 

  • Stockdale G, Cheng A (2009) Finding design space and reliable operating region using a multivariate Bayesian approach with experimental design. Qual Technol Quant Manag 6(4):391–408

    Google Scholar 

  • Thomas A, O’Hara B, Ligges U, Sturtz S (2006) Making BUGS open. R News 6(1):12–17

    Google Scholar 

  • USP 38/NF 33 (2015) Design and development of biological assays <1032>, vol 1. United States Pharmacopeial Convention, Rockville, pp 769–796

    Google Scholar 

  • USP 38/NF 33 <1033> (2015) Biological assay validation, vol 1. United States Pharmacopeial Convention, Rockville, pp 796–807

    Google Scholar 

  • Vander Heyden, Y., Nijhuis, A., Smeyers-Verbeke, J., Vandeginste, B. G. M., and Massart, D. L. (2001). “Guidance for Robustness/Ruggedness Tests in Methods Validation,” Journal of Pharmaceutical and Biomedical Analysis, 24, 723–753. 441, 444, 445, 446

    Google Scholar 

  • Wheeler DJ (2011) Problems with risk priority numbers. Qual Dig. http://www.qualitydigest.com/inside/quality-insider-article/problems-risk-priority-numbers.html

  • Zellner A (1962) An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. J Am Stat Assoc 57:348–368

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peterson, J., Altan, S. (2016). Overview of Drug Development and Statistical Tools for Manufacturing and Testing. In: Zhang, L. (eds) Nonclinical Statistics for Pharmaceutical and Biotechnology Industries. Statistics for Biology and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-23558-5_15

Download citation

Publish with us

Policies and ethics