Advertisement

Reasoning over Linear Probabilistic Knowledge Bases with Priorities

  • Nico PotykaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9310)

Abstract

We consider the problem of reasoning over probabilistic knowledge bases with different priority levels. While we assume that the knowledge is consistent on each level, there can be inconsistencies between different levels. Examples arise naturally in hierarchical domains when general knowledge is overwritten with more specific information. We extend recent results on inconsistency-tolerant probabilistic reasoning to propose a solution for this problem.

Keywords

Knowledge Base Probabilistic Logic Priority Model Integrity Constraint Access Control Policy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adamcık, M.: Collective Reasoning under Uncertainty and Inconsistency. Ph.D. thesis, University of Manchester (2014)Google Scholar
  2. 2.
    Amgoud, L., Kaci, S.: An argumentation framework for merging conflicting knowledge bases. Int. J. Approximate Reasoning 45(2), 321–340 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic merging and distance-based fusion of propositional information. Ann. Math. Artif. Intell. 34(1–3), 217–252 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonatti, P.A., Faella, M., Sauro, L.: Adding default attributes to EL++. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011 (2011)Google Scholar
  5. 5.
    Brewka, G.: Reasoning about priorities in default logic. In: AAAI 1994, pp. 940–945 (1994)Google Scholar
  6. 6.
    Britz, K., Heidema, J., Meyer, T.A.: Semantic preferential subsumption. In: KR 2008, pp. 476–484 (2008)Google Scholar
  7. 7.
    Daniel, L.: Paraconsistent Probabilistic Reasoning. Ph.D. thesis, L’École Nationale Supérieure des Mines de Paris (2009)Google Scholar
  8. 8.
    De Bona, G., Finger, M.: Measuring inconsistency in probabilistic logic: rationality postulates and dutch book interpretation. Artificial Intelligence (2015, to appear)Google Scholar
  9. 9.
    De Bona, G., Cozman, F.G., Finger, M.: Towards classifying propositional probabilistic logics. J. Appl. Logic 12(3), 349–368 (2014)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fisseler, J.: First-order probabilistic conditional logic and maximum entropy. Logic J. IGPL 20(5), 796–830 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Jaumard, B., Hansen, P., Poggi, M.: Column generation methods for probabilistic logic. ORSA - J. Comput. 3(2), 135–148 (1991)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001) zbMATHGoogle Scholar
  13. 13.
    Kern-Isberner, G., Rödder, W.: Belief revision and information fusion in a probabilistic environment. In: Proceedings 16th International FLAIRS Conference, FLAIRS 2003, pp. 506–510. AAAI Press, Menlo Park (2003)Google Scholar
  14. 14.
    Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic conditionals. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings Twelfth International Conference on the Principles of Knowledge Representation and Reasoning, KR 2010, pp. 382–391. AAAI Press (2010)Google Scholar
  15. 15.
    Konieczny, S., Pérez, R.P.: Logic based merging. J. Philos. Logic 40(2), 239–270 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1), 167–207 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res. 10, 380–391 (1999)MathSciNetGoogle Scholar
  18. 18.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6), 852–883 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of KR 2010. AAAI Press (2010)Google Scholar
  20. 20.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Paris, J.B., Vencovská, A.: On the applicability of maximum entropy to inexact reasoning. Int. J. Approximate Reasoning 3(1), 1–34 (1989)zbMATHCrossRefGoogle Scholar
  22. 22.
    Potyka, N.: Linear programs for measuring inconsistency in probabilistic logics. In: Proceedings KR 2014. AAAI Press (2014)Google Scholar
  23. 23.
    Potyka, N., Thimm, M.: Consolidation of probabilistic knowledge bases by inconsistency minimization. In: Proceedings ECAI 2014, pp. 729–734. IOS Press (2014)Google Scholar
  24. 24.
    Potyka, N., Thimm, M.: Probabilistic reasoning with inconsistent beliefs using inconsistency measures. In: International Joint Conference on Artificial Intelligence 2015 (IJCAI 2015) (2015, to appear)Google Scholar
  25. 25.
    Qi, G., Liu, W., Bell, D.A.: Merging stratified knowledge bases under constraints. In: The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16–20, 2006, Boston, Massachusetts, USA, vol. 21, p. 281. AAAI Press, Menlo Park; MIT Press, Cambridge 1999 (2006)Google Scholar
  26. 26.
    Wilmers, G.: A foundational approach to generalising the maximum entropy inference process to the multi-agent context. Entropy 17(2), 594–645 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceFern Universität in HagenHagenGermany

Personalised recommendations