Uncertain Logical Gates in Possibilistic Networks. An Application to Human Geography

  • Didier Dubois
  • Giovanni Fusco
  • Henri Prade
  • Andrea TettamanziEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9310)


Possibilistic networks offer a qualitative approach for modeling epistemic uncertainty. Their practical implementation requires the specification of conditional possibility tables, as in the case of Bayesian networks for probabilities. This paper presents the possibilistic counterparts of the noisy probabilistic connectives (and, or, max, min, ...). Their interest is illustrated on an example taken from a human geography modeling problem. The difference of behaviors in some cases of some possibilistic connectives, with respect to their probabilistic analogs, is discussed in details.


Networking Possibilities (PN) Conditional Possibility Possibilistic Counterpart Model Epistemic Uncertainty Independent Causal Influence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially funded by CNRS PEPS Project Geo-Incertitude.


  1. 1.
    Antonucci, A.: The imprecise noisy-OR gate. In: Proceedings of 14th International Conference on Information Fusion (FUSION’11), Chicago, IL, 5–8, 1–7 July 2011Google Scholar
  2. 2.
    Amor, N., Benferhat, S., Mellouli, K.: Anytime propagation algorithm for min-based possibilistic graphs. Soft Comput. 8, 150–161 (2003)CrossRefGoogle Scholar
  3. 3.
    Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between possibilistic logic bases and possibilistic causal networks. Int. J. Approximate Reasoning 29(2), 135–173 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Caglioni, M., Dubois, D., Fusco, G., Moreno, D., Prade, H., Scarella, F., Tettamanzi, A.: Mise en œuvre pratique de réseaux possibilistes pour modéliser la spécialisation sociale dans les espaces métropolisés. In: LFA 2014, pp. 267–274 (2014)Google Scholar
  5. 5.
    Centi, C.: Le Laboratoire Marseillais: Chemins d’Intégration Métropolitaine et de Segmentation Sociale. L’Harmattan, Paris (1996)Google Scholar
  6. 6.
    Díez, F., Drudzel, M.: Canonical probabilistic models for knowledge engineering. Technical report CISIAD-06-01 (2007)Google Scholar
  7. 7.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic, pp. 103–112. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
  9. 9.
    Fusco, G., Scarella, F.: Métropolisation et ségrégation sociospatiale. Les flux des migrations résidentielles en PACA. L’Espace Géographique 40(4), 319–336 (2011)Google Scholar
  10. 10.
    Henrion, M.: Some practical issues in constructing belief networks. In: Kanal, L., Levitt, T., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence, vol. 3, pp. 161–173. Elsevier, New York (1989)Google Scholar
  11. 11.
    Jensen, F.: Bayesian Networks and Decision Graphs. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Piatti, A., Antonucci, A., Zaffalon, M.: Building knowledge-based expert systems by credal networks: a tutorial. In: Baswell, A.R. (ed.) Advances in Mathematics Research, vol. 11. Nova Science Publishers, New York (2010)Google Scholar
  13. 13.
    Parsons, S., Bigham, J.: Possibility theory and the generalized noisy OR model. In: Proceedings of 16th International Conference Information Processing and Management of Uncertainty (IPMU 1996), Granada, pp. 853–858 (1996)Google Scholar
  14. 14.
    Renooij, S., van der Gaag, L.C., Parsons, S.: Context-specific sign-propagation in qualitative probabilistic networks. Artif. Intell. 140(1/2), 207–230 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Scarella, F.: La ségrégation résidentielle dans l’espace-temps métropolitain: analyse spatiale et géo-prospective des dynamiques résidentielles de la métropole azuréenne. Ph.D. thesis, Université Nice Sophia Antipolis (2014)Google Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Didier Dubois
    • 1
  • Giovanni Fusco
    • 2
  • Henri Prade
    • 1
  • Andrea Tettamanzi
    • 3
    Email author
  1. 1.IRIT – CNRSToulouseFrance
  2. 2.Univ. Nice Sophia Antipolis/CNRS, ESPACE, UMR7300NiceFrance
  3. 3.Univ. Nice Sophia Antipolis/CNRS, I3S, UMR7271Sophia AntipolisFrance

Personalised recommendations