The Mysterious World of Normal Numbers

  • Jean-Marie De KoninckEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9310)


Given an integer \(q\ge 2\), a q-normal number (or a normal number) is a real number whose q-ary expansion is such that any preassigned sequence of length \(k\ge 1\), of base q digits from this expansion, occurs at the expected frequency, namely \(1/q^k\). Even though there are no standard methods to establish if a given number is normal or not, it is known since 1909 that almost all real numbers are normal in every base q. This is one of the many reasons why the study of normal numbers has fascinated mathematicians for the past century. We present here a brief survey of some of the important results concerning normal numbers.


Algebraic Number Irrational Number Abnormal Number Infinite Word Liouville Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bailey, D.H., Borwein, J.M.: Nonnormality of the Stoneham constants (2011).
  2. 2.
    Bailey, D.H., Borwein, J.M., Crandall, R.E., Pomerance, C.: On the binary expansions of algebraic numbers. J. Number Theory Bordeaux 16, 487–518 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bailey, D.H., Crandall, R.E.: On the random character of fundamental constant expansions. Expe. Math. 10(2), 175–190 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bailey, D.H., Crandall, R.E.: Random generators and normal numbers. Exp. Math. 11(4), 527–546 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bassily, N.L., Kátai, I.: Distribution of consecutive digits in the \(q\)-ary expansions of some sequences of integers. J. Math. Sci. 78(1), 11–17 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borel, E.: Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27, 247–271 (1909)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Mathematics, vol. 193. Cambridge University Press, New York (2012)CrossRefGoogle Scholar
  8. 8.
    Cassels, J.W.S.: On a problem of Steinhaus about normal numbers. Colloquium Mathematicum 7, 96–101 (1959)MathSciNetGoogle Scholar
  9. 9.
    Champernowne, D.G.: The construction of decimals normal in the scale of ten. J. London Math. Soc. 8, 254–260 (1933)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Copeland, A.H., Erdős, P.: Note on normal numbers. Bull. Am. Math. Soc. 52, 857–860 (1946)zbMATHCrossRefGoogle Scholar
  11. 11.
    Davenport, H., Erdős, P.: Note on normal decimals. Can. J. Math. 4, 58–63 (1952)zbMATHCrossRefGoogle Scholar
  12. 12.
    De Koninck, J.M., Kátai, I.: On the distribution of subsets of primes in the prime factorization of integers. Acta Arith. 72(2), 169–200 (1995)zbMATHMathSciNetGoogle Scholar
  13. 13.
    De Koninck, J.M., Kátai, I.: Construction of normal numbers by classified prime divisors of integers. Functiones et Approximatio 45(2), 231–253 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    De Koninck, J.M., Kátai, I.: On a problem on normal numbers raised by Igor Shparlinski. Bull. Aust. Math. Soc. 84, 337–349 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    De Koninck, J.M., Kátai, I.: Some new methods for constructing normal numbers. Annales des Sciences Mathématiques du Québec 36(2), 349–359 (2012)zbMATHGoogle Scholar
  16. 16.
    De Koninck, J.M., Kátai, I.: Normal numbers generated using the smallest prime factor function. Annales mathématiques du Québec 38(2), 133–144 (2014)zbMATHCrossRefGoogle Scholar
  17. 17.
    De Koninck, J.-M., Kátai, I.: The number of prime factors function on shifted primes and normal numbers. In: Rassias, T.M., Tóth, L. (eds.) Topics in Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol. 94, pp. 315–326. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    De Koninck, J.M., Luca, F.: Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, vol. 134. American Mathematical Society, Providence (2012)Google Scholar
  19. 19.
    Madritsch, M.G., Thuswaldner, J.M., Tichy, R.F.: Normality of numbers generated by the values of entire functions. J. Number Theory 128, 1127–1145 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Martin, G.: Absolutely abnormal numbers. Am. Math. Monthly 108(8), 746–754 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Nakai, Y., Shiokawa, I.: Discrepancy estimates for a class of normal numbers. Acta Arith. 62(3), 271–284 (1992)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Nakai, Y., Shiokawa, I.: Normality of numbers generated by the values of polynomials at primes. Acta Arith. 81(4), 345–356 (1997)MathSciNetGoogle Scholar
  23. 23.
    Sierpiński, W.: Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’un tel nombre. Bull. Soc. Math. Fr. 45, 127–132 (1917)Google Scholar
  24. 24.
    Stoneham, R.: On absolute \((j,\epsilon )\)-normality in the rational fractions with applications to normal numbers. Acta Arith. 22, 277–286 (1973)zbMATHGoogle Scholar
  25. 25.
    Vandehey, J.: The normality of digits in almost constant additive functions. Monatsh. Math. 171(3-4), 481–497 (2013)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Département de Mathématiques et de StatistiqueUniversité LavalQuébecCanada

Personalised recommendations