International Conference on Web-Age Information Management

WAIM 2015: Web-Age Information Management pp 16-28 | Cite as

A New Link Prediction Algorithm Based on Local Links

  • Juan Yang
  • Lixin YangEmail author
  • Pengye Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9391)


Link prediction refers to estimating the possibility of the existence of non-existent links between the nodes. The link prediction algorithms based on local information merely consider nodes’ attributes or a small amount of topology information about common neighbors. In this paper, we proposed a new measure motivated by the cohesion between common neighbors and the predicted nodes——LNL (Local Neighbors Link). Experiments show that, compared with four classical algorithms on seven real networks, LNL has the higher accuracy and robustness. Furthermore, we apply the link prediction algorithms into large-scale networks. We implement the LNL method in both MapReduce and Spark, the experiments show that the implementation by Spark has higher efficiency than using MapReduce.


Link prediction Complex network Adjacent nodes Parallel algorithm Spark 


  1. 1.
    Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newslett. 7(2), 3–12 (2005)CrossRefGoogle Scholar
  2. 2.
    Li, J., Shang, X.Q., Guo, Y., Li, X.Y.: New approach of link prediction in PPI network. Appl. Res. Comput. 11, 016 (2012)Google Scholar
  3. 3.
    Wu, M.: Research on Relationship recommender systems based on link prediction, Beijing University of Posts and Telecommunications (2012)Google Scholar
  4. 4.
    Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390(6), 1150–1170 (2011)CrossRefGoogle Scholar
  5. 5.
    Guns, R., Rousseau, R.: Recommending research collaborations using link prediction and random forest classifiers. Scientometrics 101(2), 1461–1473 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhang, Q., Shang, M., Lü, L.: Similarity-based classification in partially labeled networks. Int. J. Mod. Phys. C 21(06), 813–824 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lü, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80(4), 046122 (2009)CrossRefGoogle Scholar
  8. 8.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)zbMATHCrossRefGoogle Scholar
  9. 9.
    Liu, W., Lü, L.: Link prediction based on local random walk. EPL (Europhy. Lett.) 89(5), 58007 (2010)CrossRefGoogle Scholar
  10. 10.
    Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM 2006: Workshop on Link Analysis, Counter-terrorism and Security (2006)Google Scholar
  11. 11.
    Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., Elovici, Y.: Link prediction in social networks using computationally efficient topological features. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), pp. 73–80. IEEE (2011)Google Scholar
  12. 12.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz. (1901)Google Scholar
  13. 13.
    Adamic, L.A., Adar, E.: Friends and neighbors on the Web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  14. 14.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phy. J. B. 71(4), 623–630 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Dong, Y.X., Ke, Q., Wu, B.: Link prediction based on node similarity. Comput. Sci. 38(7), 162 (2011)Google Scholar
  17. 17.
    Cannistraci, C.V., Alanis-Lobato, G., Ravasi, T.: From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks. Scientific reports, 3 (2013)Google Scholar
  18. 18.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM. 51(1), 107–113 (2008)CrossRefGoogle Scholar
  19. 19.
    Rao, J., Wu, B., Dong, Y.X.: Parallel link prediction in complex network using MapReduce. Ruanjian Xuebao/J. Softw. 23(12), 3175–3186 (2012)Google Scholar
  20. 20.
    Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, pp. 10–10 (2010)Google Scholar
  21. 21.
    Watts, D.J., Strogatz, S.H.: Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  22. 22.
    Batagelj, V., Mrvar, A.: Pajek datasets (2006).
  23. 23.
    Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)Google Scholar
  24. 24.
    Vladimir Batagelj and Andrej Mrvar (2006): Pajek datasets.
  25. 25.
    Facebook (NIPS) network dataset – {KONECT} (2015)Google Scholar
  26. 26.
    Hamsterster friendships network dataset – {KONECT} (2015)Google Scholar
  27. 27.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)CrossRefGoogle Scholar
  28. 28.
    Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)CrossRefGoogle Scholar
  29. 29.
    Leskovec J. Stanford large network dataset collection.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Key Lab of Intelligent Telecommunication Software and MultimediaBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations