Skip to main content

Optimisation

  • Chapter
  • 1499 Accesses

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 30))

Abstract

Linear programming is the most widely utilised optimisation method in forestry. Linear programming can be used to deal with many sustainability issues, such as the requirement of even flow of timber over time. It can also be used to deal with multiple goals, by using a constraint approach and Pareto front or by using a goal programming approach. Integer or mixed integer programming can also be used to deal with many spatial goals and constraints, like adjacency and green-up constraints or those of clustering timber harvests. In this chapter, we present different formulations of linear programming and their effect on the resulting harvest schedule with numerical examples. We also present different formulations of goal programming and the interpretation of the results in different cases. Furthermore, we present some more complicated planning cases involving hierarchical and spatial planning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bettinger, P., Lennette, M., Johnson, K. N., & Spies, T. A. (2005). A hierarchical spatial framework for forest landscape planning. Ecological Modelling, 182, 25–48.

    Article  Google Scholar 

  • Bettinger, P., Boston, K., Siry, J., & Grebner, D. L. (2009). Forest management and planning. Amsterdam: Academic. 360 p.

    Google Scholar 

  • Buongiorno, J., & Gilles, J. K. (2003). Decision methods for forest resource management. Amsterdam : Academic. 439 p.

    Google Scholar 

  • Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming (Vol. I). New York: John Wiley and Sons.

    Google Scholar 

  • Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., & Bailey, R. L. (1983). Timber management. A quantitative approach. New York: Wiley.

    Google Scholar 

  • Dantzig, G. B. (1951). Maximization of a linear function of variables subject to linear inequalities. In T. C. Koopmans (Ed.), Activity analysis of production and allocation. New York: Wiley.

    Google Scholar 

  • Davis, L.-S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2001). Forest management – to sustain ecological, economic and social values (4th ed.). Boston: McGraw-Hill. 804 p.

    Google Scholar 

  • Díaz-Balteiro, L., & Romero, C. (2001). Combined use of goal programming and the analytic hierarchy process in forest management. In D. L. Schmoldt, J. Kangas, G. Mendoza, & M. Pesonen (Eds.), The analytic hierarchy process (AHP) for natural resource and environmental decision making (Managing Forest Ecosystems, Vol. 2, pp. 81–95). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Díaz-Balteiro, L., & Romero, C. (2003). Forest management optimization models when carbon captured is considered: A goal programming approach. Forest Ecology and Management, 174, 447–457.

    Article  Google Scholar 

  • Duckstein, L., Korhonen, P., & Tecle, A. (1988). Multiobjective forest management: A visual, interactive, and fuzzy approach. In B. M. Kent & L. S. Davis (Eds.), The 1988 symposium on systems analysis in forest resources (General technical report, RM-161, pp. 68–74). Fort Collins: USDA Forest Service.

    Google Scholar 

  • Eyvindson, K. (2012). Balancing equity and efficiency of goal programming for use in forest management planning. Canadian Journal of Forest Research, 42, 1919–1925.

    Article  Google Scholar 

  • Eyvindson, K., Kangas, A., Kurttila, M., & Hujala, T. (2010). Using preference information in developing alternative forest plans. Canadian Journal of Forest Research, 40, 2398–2410.

    Article  Google Scholar 

  • Eyvindson, K., Kurttila, M., Hujala, T., & Kangas, A. (2015). Interactive preference elicitation incorporating a priori and a posteriori methods. Annals of Operations Research, 232, 99–113.

    Google Scholar 

  • Field, D. B. (1973). Goal programming for forest management. Forest Science, 19, 125–135.

    CAS  Google Scholar 

  • Flavell, R. B. (1976). A new goal programming formulation. Omega, 4(6), 731–732. doi:10.1016/0305-0483(76)90099-2.

    Article  Google Scholar 

  • Goycoolea, M., Murray, A., Vielma, J. P., & Weintraub, A. (2009). Evaluating approaches for solving the area restriction model in harvest scheduling. Forest Science, 55(2), 149–165.

    Google Scholar 

  • Hillier, F. S., & Lieberman, G. J. (2001). Introduction to operations research (7th ed.). New York: McGraw Hill. 1214 p.

    Google Scholar 

  • Ignizio, J. P. (1976). Goal programming and extensions. Lexington: Lexington Books.

    Google Scholar 

  • Johnson, K. N., & Scheurman, H. L. (1977). Techniques for prescribing optimal timber harvest and investment under different objectives – Discussion and synthesis (Forest science monographs, 18). Washington: Society of American Foresters.

    Google Scholar 

  • Jones, D., & Tamiz, M. (2010). Practical goal programming (Vol. 141). New York: Springer.

    Google Scholar 

  • Kangas, J., & Pukkala, T. (1992). A decision theoretic approach applied to goal programming of forest management. Silva Fennica, 26, 169–176.

    Article  Google Scholar 

  • Kangas, J., Alho, J., Kolehmainen, O., & Mononen, A. (1998). Analyzing consistency of experts’ judgments – Case of assessing forest biodiversity. Forest Science, 44(4), 610–617.

    Google Scholar 

  • Kangas, A., Nurmi, M., & Rasinmäki, J. (2014). From strategic plan to a tactical plan using hierarchic optimization. Scandinavian Journal of Forest Research, 29, 154–165.

    Article  Google Scholar 

  • Kärkkäinen, L., Kurttila, M., Salminen, O., & Viiri, H. (2014). Effects of energy wood harvesting on timber production potential and biological diversity in North Karelia, Finland. Forest Science, 60, 1077–1088.

    Article  Google Scholar 

  • Kurttila, M., Pukkala, T., & Kangas, J. (2001). Composing landscape level forest plans for forest areas under multiple private ownership. Boreal Environmental Research, 6, 285–296.

    Google Scholar 

  • Lappi, J. (1992). JLP: A linear programming package for management planning (Research notes, 414). Helsinki: Finnish Forest Research Institute.

    Google Scholar 

  • Lappi, J., & Lempinen, R. (2014). A linear programming algorithm and software for forest-level planning problems including factories. Scandinavian Journal of Forest Research. doi:10.1080/02827581.2014.886714.

    Google Scholar 

  • Lappi, J., & Siitonen, M. (1985). A utility model for timber production based on different interest rates for loans and savings. Silva Fennica, 19, 271–280.

    Article  Google Scholar 

  • McDill, M. E., & Braze, J. (2000). Comparing adjacency constraint formulations for randomly generated forest planning problems with four age-class distributions. Forest Science, 46, 423–436.

    Google Scholar 

  • Mendoza, G. A. (1987). Goal programming formulations and extensions: An overview and analysis. Canadian Journal of Forest Research, 17, 575–581.

    Article  Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization. Springer.

    Google Scholar 

  • Murray, A. T. (1999). Spatial restrictions in harvest scheduling. Forest Science, 45, 45–52.

    Google Scholar 

  • Öhman, K., & Eriksson, L.-O. (2010). Aggregating harvest activities in long term forest planning by minimizing harvest area perimeters. Silva Fennica, 44, 77–89.

    Article  Google Scholar 

  • Öhman, K., & Wikström, P. (2008). Incorporating aspects of habitat fragmentation into long-term forest planning using mixed integer programming. Forest Ecology and Management, 255, 440–446.

    Article  Google Scholar 

  • Romero, C. (2004). A general structure of achievement function for a goal programming model. European Journal of Operational Research, 153(3), 675–686.

    Article  Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill. 287 p.

    Google Scholar 

  • Taha, H. A. (2007). Operations research: An introduction (8th ed.). New York: Pearson Prentice Hall. 838 p.

    Google Scholar 

  • Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research, 111, 569–581.

    Article  Google Scholar 

  • Tecle, A., Duckstein, L., & Korhonen, P. (1994). Interactive multiobjective programming for forest resources management. Applied Mathematics and Computing, 63, 75–93.

    Article  Google Scholar 

  • Weintraub, A., & Cholaky, A. (1991). A hierarchical approach to forest planning. Forest Science, 37(2), 439–460.

    Google Scholar 

  • Weintraub, A., & Davis, L. (1996). Hierarchical planning in forest resource management: Defining the dimensions of the subjected area (pp. 2–14). Petawawa National Forestry Institute, Canadian Forest Service, Information Report PI-X-124.

    Google Scholar 

  • Weintraub, A., Barahona, F., & Epstein, R. (1994). A column generation algorithm for solving general forest planning problems with adjacency constraints. Forest Science, 40, 142–161.

    Google Scholar 

  • Wu, J., & David, J. L. (2002). A spatially explicit hierarchical approach to modeling complex ecological systems: Theory and applications. Ecological Modelling, 153, 7–26.

    Article  Google Scholar 

  • Zhang, D., & Pearse, P. H. (2011). Forest resource economics. Vancouver: University of British Columbia Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kangas, A., Kurttila, M., Hujala, T., Eyvindson, K., Kangas, J. (2015). Optimisation. In: Decision Support for Forest Management. Managing Forest Ecosystems, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-23522-6_6

Download citation

Publish with us

Policies and ethics