Skip to main content

Computational Modeling of miRNA Biogenesis

  • Chapter
Mathematical Models in Biology

Abstract

Over the past few years it has been observed, thanks in no small part to high-throughput methods, that a large proportion of the human genome is transcribed in a tissue- and time-specific manner. Most of the detected transcripts are non-coding RNAs and their functional consequences are not yet fully understood. Among the different classes of non-coding transcripts, microRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression. Despite great progress in understanding the biological role of miRNAs, our understanding of how miRNAs are regulated and processed is still developing. High-throughput sequencing data have provided a robust platform for transcriptome-level, as well as gene-promoter analyses. In silico predictive models help shed light on the transcriptional and post-transcriptional regulation of miRNAs, including their role in gene regulatory networks. Here we discuss the advances in computational methods that model different aspects of miRNA biogeneis, from transcriptional regulation to post-transcriptional processing. In particular, we show how the predicted miRNA promoters from PROmiRNA, a miRNA promoter prediction tool, can be used to identify the most probable regulatory factors for a miRNA in a specific tissue. As differential miRNA post-transcriptional processing also affects gene-regulatory networks, especially in diseases like cancer, we also describe a statistical model proposed in the literature to predict efficient miRNA processing from sequence features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, Z.: Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci. Rep. 4, 5150 (2014)

    Google Scholar 

  2. Davis, B.N.: Regulation of MicroRNA biogenesis: a miRiad of mechanisms. Cell Commun. Signal 10, 7–18 (2014)

    Google Scholar 

  3. Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)

    Article  Google Scholar 

  4. Plaisier, C.L.: A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res. 22, 2302–2314 (2012)

    Article  Google Scholar 

  5. Esquela-Kerscher, A.: Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006)

    Article  Google Scholar 

  6. Takahashi, R.U.: The role of microRNAs in the regulation of cancer stem cells. Front Genet 4, 295 (2014)

    Article  Google Scholar 

  7. Davidson-Moncada, J.: MicroRNAs of the immune system: roles in inflammation and cancer. Ann. N. Y. Acad. Sci. 1183, 183–194 (2010)

    Article  Google Scholar 

  8. Ma, X.: MicrorNAs in NF-kappaB signaling. J. Mol. Cell Biol. 3, 159–166 (2011)

    Article  Google Scholar 

  9. Lewis, B.P.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  Google Scholar 

  10. Betel, D.: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010)

    Article  Google Scholar 

  11. Sandelin, A.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles Nucl. Acids Res. 32 D91–D94 (2004)

    Article  Google Scholar 

  12. Krol, J.: The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010)

    Google Scholar 

  13. Fickett, J.: Eukaryotic promoter recognition. Genome Res. 7, 861–878 (1997)

    Google Scholar 

  14. Marsico, A.: PROmiRNA: a new miRNA promoter recognition method uncovers the complex regulation of intronic miRNAs. Genome Biol. 14, R84 (2013)

    Article  Google Scholar 

  15. Monteys, A.M.: Structure and activity of putative intronic miRNA promoters. RNA 16, 495–505 (2010)

    Article  Google Scholar 

  16. Hinske, L.C.: A potential role for intragenic miRNAs on their hosts’ interactome. BMC Genomics 11, 533 (2010)

    Article  Google Scholar 

  17. Fujita, S.: Putative promoter regions of miRNA genes involved in evolutionarily conserved regulatory systems among vertebrates. Bioinformatics 24, 303–308 (2008)

    Article  Google Scholar 

  18. Kozomara, A.: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152-D157 (2011)

    Google Scholar 

  19. Kozomara, A.: ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009)

    Google Scholar 

  20. de Hoon, M.: Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 44, 627–628 (2008)

    Article  Google Scholar 

  21. Core, L.J.: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008)

    Article  Google Scholar 

  22. Georgakilas, G.: microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs. Nat. Commun. 10, 5700 (2014)

    Google Scholar 

  23. Barski, A.: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008)

    Article  Google Scholar 

  24. Barski, A.: Chromatin poises miRNA- and protein-coding genes for expression. Genome Res. 19, 1742–1751 (2009)

    Article  Google Scholar 

  25. Ozsolak, F.: Chromatin structure analyses identify miRNA promoters. Gene Dev. 22, 3172–3183 (2008)

    Article  Google Scholar 

  26. Chien, C.H.: Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res. 39, 9345–9356 (2011)

    Article  Google Scholar 

  27. Megraw, M.: A transcription factor affinity-based code for mammalian transcription initiation. Genome Res. 19, 644–656 (2009)

    Article  Google Scholar 

  28. Eis, P.: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. 102, 3627–3632 (2003)

    Article  Google Scholar 

  29. Thomas-Chollier, M.: Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat. Protoc. 102, 3627–3632 (2003)

    Google Scholar 

  30. Uhlen, M.: Tissue-based map of the human proteome. Science 347, 1260419 (2015)

    Article  Google Scholar 

  31. Szklarczyk, D.: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acid Res. 39, D561–568 (2011)

    Article  Google Scholar 

  32. Ha, M.: Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014)

    Article  Google Scholar 

  33. Auyeung, V.C.: Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013)

    Article  Google Scholar 

  34. Conrad, T.: Microprocessor activity controls differential miRNA biogenesis in vivo. Cell Rep. 9, 542–554 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Marsico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caffrey, B., Marsico, A. (2015). Computational Modeling of miRNA Biogenesis. In: Zazzu, V., Ferraro, M., Guarracino, M. (eds) Mathematical Models in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-23497-7_6

Download citation

Publish with us

Policies and ethics