Skip to main content

Modelling of Protein Surface Using Parallel Heterogeneous Architectures

  • Chapter
Mathematical Models in Biology

Abstract

A proper representation of protein surfaces is an important task in bioinformatics and biophysics. In a previous work we described a parallel workflow, based on the isosurface extraction and the CUDA architecture, able to produce high-resolution molecular surfaces based on the Van der Waals, Solvent Accessible, Richards-Connolly and Blobby definitions. In particular it is able to create surfaces composed by hundred millions triangles in less than 30 s using a Nvidia GTX 580, with speedup values up to 88. However in most application such number of triangles can be difficult to manage. In this paper we present an extension able to reduce the size of the surfaces by performing a simplification step, keeping however an high quality of the results. In particular the focus of the paper is on the efficient use of heterogeneous compute capabilities available on present workstations: the large surface produced using the CUDA device is progressively transferred and simplified on the host using the multicore CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinoshita, K., Nakamura, H.: Identification of the ligand binding sites on the molecular surface of proteins. Protein Sci. 14(3), 711–718 (2005)

    Article  Google Scholar 

  2. Binkowski, T.A., Adamian, L., Liang, J.: Inferring functional relationships of proteins from local sequence and spatial surface patterns. J. Mol. Biol. 332(2), 505–526 (2003)

    Article  Google Scholar 

  3. Merelli, I., Cozzi, P., D’Agostino, D., Clematis, A., Milanesi, Image-based surface matching algorithm oriented to structural biology. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(4), 1004–1016 (2011)

    Article  Google Scholar 

  4. Via, A., Ferre, F., Brannetti, B., Helmer-Citterich, M.: Protein surface similarities: a survey of methods to describe and compare protein surfaces. Cell. Mol. Life Sci. 57, 1970–1977 (2000)

    Article  Google Scholar 

  5. Camacho, C.J., Vajda, S.: Protein-protein association kinetics and protein docking. Curr. Opin. Struct. Biol. 12, 36–40 (2002)

    Article  Google Scholar 

  6. Yu, Z., Hols, M.J., Cheng, Y., McCammon, J.A.: Feature-preserving adaptive mesh generation for molecular shape modelling and simulation. J. Mol. Graph. Model. 26(8), 1370–1380 (2008)

    Article  Google Scholar 

  7. Sanner, M., Olson, A.J., Spehner, J.C.: Reduced Surface: an efficient way to compute molecular surfaces. Biopolymers 38(3), 305–320 (1996)

    Article  Google Scholar 

  8. Berman, H.M., Bhat, T.N., Bourne, P.E., Feng, Z., Gilliland, G., Weissig, H., Westbrook, J.: The Protein Data Bank and the challenge of structural genomics. Nat. Struct. Biol. 7(11), 957–959 (2000)

    Article  Google Scholar 

  9. Danovaro, E., Clematis, A., Galizia, A., Ripepi, G., Quarati, A., D’Agostino, D.: Heterogeneous architectures for computational intensive applications: A cost-effectiveness analysis. J. Comput. Appl. Math. 270, 63–77 (2014)

    Article  MathSciNet  Google Scholar 

  10. Merelli, I., Orro, A., D’Agostino, D., Clematis, A., Milanesi, L.: A parallel protein surface reconstruction system. Int. J. Bioinf. Res. Appl. 4(3), 221–239 (2008)

    Article  Google Scholar 

  11. D’Agostino, D., Clematis, A., Decherchi, S., Rocchia, W., Milanesi, L., Merelli, I.: CUDA accelerated molecular surface generation. Concurr. Comput. Pract. E 26(10), 1819–1831 (2014)

    Article  Google Scholar 

  12. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3-D surface construction algorithm. Comput. Graph. 21(3), 163–169 (1987)

    Article  Google Scholar 

  13. D’Agostino, D., Merelli, I., Clematis, A., Milanesi, L., Orro A.: A parallel workflow for the reconstruction of molecular surfaces. Adv. Parallel Comput. 15, 147–154 (2008)

    Google Scholar 

  14. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: ACM SIGGRAPH 1997 Proceedings, pp 209–216 (1997)

    Google Scholar 

  15. Clematis, A., D’Agostino, D., Mancini, M., Gianuzzi, V.: Parallel decimation of 3D meshes for efficient web-based isosurface extraction. Adv. Parallel Comput. Ser. 13, 159–166 (2004)

    Article  Google Scholar 

  16. Hoppe, H.: Efficient, lossless, continuous-resolution representation of surface triangulations. In: ACM SIGGRAPH 1996 Proceedings, pp 99–108 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele D’Agostino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Agostino, D., Clematis, A., Danovaro, E., Merelli, I. (2015). Modelling of Protein Surface Using Parallel Heterogeneous Architectures. In: Zazzu, V., Ferraro, M., Guarracino, M. (eds) Mathematical Models in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-23497-7_14

Download citation

Publish with us

Policies and ethics