Skip to main content

Wheat Breeding: Current Status and Bottlenecks

  • Chapter
Book cover Alien Introgression in Wheat

Abstract

Wheat improvement in the twentieth century was carried out using traditional breeding methods. One consequence of commercial breeding is that differences between alleles are diminishing in modern elite cultivars. The strategy to “cross the best with the best” resulted in a narrowing genetic variation of new cultivars and a stagnation in the yield improvement during the last period of wheat production in several regions of the world. It has become evident that the development of wheat genotypes for further crop improvement will require new breeding tools to widen genetic variation and the selection of wheat cultivars that meet new challenges. The use of wild and cultivated relatives in traditional breeding is time-consuming in many cases. Efficient wheat breeding programmes will require breeding efforts, including new strategies in gene bank research to exploit the genetic variation existing in wild relatives, the utilisation of the genetic variation in wild relatives to develop new germplasm in pre-breeding programmes and the introgression of new germplasm into the elite wheat pool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1988) Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J Heredity 79:225–238

    CAS  Google Scholar 

  • Amandeep KR, Satinder K, Dhaliwal HS, Singh K, Chunneja P (2012) Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J Genet 91:155–161

    Article  Google Scholar 

  • Anderson WK (2010) Closing the gap between actual and potential yield of rainfed wheat: the impacts of environment, management and cultivar. Field Crops Res 116:14–22

    Article  Google Scholar 

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Winson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Balla L, Bedő Z, Láng L, Szunics L (1986) Genetic advance in wheat breeding and its contribution to yield gains. Acta Agron Hung 35:219–225

    Google Scholar 

  • Bedő Z, Balla L, Szunics L, Láng L, Kramarikné-Kissimon J (1993) A martonvásári 1B/1R transzlokációt hordozó búzafajták agronómiai tulajdonságai. (Agronomic properties of Martonvásár wheat varieties bearing the 1B/1R ranslocation). Növénytermelés 42:391–398

    Google Scholar 

  • Blum A, Poiarkova H, Golan G, Mayer J (1983) Chemical desiccation of wheat plants as a simulator of post-anthesis stress. I. Effect on translocation and kernel growth. Field Crops Res 6:51–58

    Article  Google Scholar 

  • Bodega JL, Andrade FH (1996) The effect of genetic improvement and hybridization on grain and biomass yield of bread wheat. Cereal Res Comm 24:171–177

    Google Scholar 

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change and crop production. CABI, London, pp 115–138

    Chapter  Google Scholar 

  • Brennan JP, Byerlee D (1991) The rate of crop varietal replacement on farms. Measures and empirical results for wheat. Plant Varieties Seeds 4:99–106

    Google Scholar 

  • Breseghello F, Sorrells M (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Brown J, Caligari P (2008) An introduction to plant breeding. Blackwell Publishing, Oxford, p 209

    Book  Google Scholar 

  • Calderini DF, Dreccer MF, Slafer GA (1995) Genetic improvement in wheat yield and associated traits. Re-examination of previous results and latest trends. Plant Breed 114:108–112

    Article  Google Scholar 

  • Cao S, Xu H, Li Z, Wang X, Wang D, Zhang A, Jia X, Zhang X (2007) Identification and characterization of a novel Ag.intermedium HMW-GS gene from T. aestivum to Ag. intermedium addition lines TAI-I series. J Cereal Sci 45:293–301

    Article  CAS  Google Scholar 

  • Carver BF, Rayburn AL (1994) Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance. Crop Sci 34:1505–1510

    Article  Google Scholar 

  • Chen SY, Xia GM, Quan TY, Xiang FN, Jin Y, Chen HM (2004) Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci 167:773–779

    Article  CAS  Google Scholar 

  • Chen G, Zheng Q, Bao Y, Liu S, Wang H, Li X (2012) Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J Biosci 37:149–155

    Article  PubMed  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Green EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DANN polymorphism in natural population by ecotilling. Plant J 34:778–786

    Article  Google Scholar 

  • del Blanco IA, Rajaram S, Kronstad WE (2001) Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci 41:670–676

    Article  Google Scholar 

  • Derera NF, Bhatt GM (1972) Effectiveness of mechanical mass selection in wheat (Triticum aestivum L.). Aust J Agric Res 23:761–768

    Article  Google Scholar 

  • Dhaliwal AS, Mares DJ, Marshall DR, Skeritt JH (1988) Protein composition and pentosan content in relation to dough stickiness of 1B/1R translocation wheats. Cereal Chem 62:143–149

    Google Scholar 

  • Dunwell JM (2008) Transgenic wheat, barley, and oats: future prospects. In: Jones HD Shewry PR (eds) Transgenic wheat, barley and oats: production and characterization protocols, Springer Protocols, Methods in Molecular Biology. Humana Press, New York, pp 333–346

    Google Scholar 

  • FAOSTAT, FAO Database. Food and Agriculture Organization of the United Nations. Available at: http://faostat.fao.org

  • USDA Foreign Aricultural Service (2010) Commodity intelligence Report, December 22, 2010

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. doi:10.1007/BF00035277

    Article  Google Scholar 

  • Friebe B, Qi LL, Liu C, Liu WX, Gill BS (2012) Registration of a hard red winter wheat genetic stock homozygous for ph1b for facilitating alien introgression for crop improvement. J Planet Reg 6:121–123

    Article  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (2000) PLABSIM: Software for simulation of marker-assisted backcrossing. J Hered 91:86–87

    Article  CAS  PubMed  Google Scholar 

  • Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H (2009) Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J Cereal Sci 50:358–363

    Article  CAS  Google Scholar 

  • Graybosch RA, Peterson CJ, Hansen LE, Mattern PJ (1990) Relationship between protein solubility characteristics, 1BL.1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germplasm. Cereal Chem 67:342–349

    CAS  Google Scholar 

  • Hay RKM (1995) Harvest index: a review of its use in plant breeding and crop physiology. Ann Appl Biol 126:197–216

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heun M, Fischbeck G (1987) Identification of wheat powdery mildew resistance genes by analysing host-pathogen interactions. Plant Breed 98:124–129

    Article  Google Scholar 

  • Javornik B, Sinkovic T, Vapa L, Koebner RMD, Rogers WJ (1991) A comparison of methods for identifying and surveying the presence of 1BL.1RS translocations in bread wheat. Euphytica 54:45–53

    Article  CAS  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua MG, Njau P, Fetch JT, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Planet Dis 91:1096–1099

    Article  Google Scholar 

  • Khalil IH, Carver BF, Smith EL (1995) Genetic gains in two selection phases of a wheat-breeding programme. Plant Breed 114:117–120

    Article  Google Scholar 

  • Kilpatrick RA (1975) New wheat cultivars and longevity of rust resistance, 1971-75. No. ARS-NE-64, 20pp

    Google Scholar 

  • Knackstedt MA, Sears RG, Rogers DE, Lookhart GL (1994) Effects of T2BS-2RL wheat-rye translocation on breadmaking quality in wheat. Crop Sci 34:1066–1070

    Article  Google Scholar 

  • Knott DR (1968) Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol 10:695–696

    Article  Google Scholar 

  • Kőszegi B, Linc G, Juhász A, Láng L, Molnár-Láng M (2000) Occurence of the 1RS/1BL wheat-rye translocation in Hungarian wheat varieties. Acta Agron Hung 48:227–236

    Article  Google Scholar 

  • Kuhr SL, Johnson VA, Peterson CJ, Mattern PJ (1985) Trends in winter wheat performance as measured in international trials. Crop Sci 6:1045–1049

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 73:393–397

    Google Scholar 

  • Lazzeri PA, Jones HD (2009) Transgenic wheat, barley and oats: production and characterization. In: Jones HD Shewry PR (eds.) Transgenic wheat, barley and oats: production and characterization protocols, Springer Protocols, Methods in Molecular Biology, Humana Press, New York, 478. pp 3–23

    Google Scholar 

  • Ledent JF, Stoy V (1988) Yield of winter wheat, a comparison of genotype from 1910 to 1976. Cer Res Comm 16:151–156

    Google Scholar 

  • Lelley J, Rajháthy T (1955) A búza és nemesítése. Akadémiai Kiadó, Budapest, p 544

    Google Scholar 

  • Litvinenko M, Lyfenko S, Poperelya F, Babajants L, Palamatchuk A (2001) Ukrainien wheat pool. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Lavoisier Publishing, Paris, pp 351–375

    Google Scholar 

  • Lukaszewski AJ (1990) Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheats. Crop Sci 30:1151–1153

    Article  Google Scholar 

  • Lukaszewski A (1993) Recontstruction in wheat of complete chromosome-1b and chromosome-1r from the 1rs.1bl translocation of Kavkaz origin. Genome 36:821–824

    Article  CAS  PubMed  Google Scholar 

  • Lukyanenko PP (1973) Szelekcija ozimüh psenyic Avrora i Kavkaz. Izbrannüje trudii. Kolos, Moskva, pp 338–343

    Google Scholar 

  • Lusser M, Parisi C, Plan D and Rodríguez-Cerezo E (2011) New plant breeding techniques: state-of-the-art and prospects for commercial development. JRC Scientific and Technical Reports. JRC European Commission, EUR 24760, pp 24–25

    Google Scholar 

  • MacKey J (1993) Demonstration of genetic gain from Swedish cereal breeding. Sveriges Utsadesforenings Tidskrift 103:33–43

    Google Scholar 

  • Manske GGB, Behl RK, Vlek PLG (1996) The effect of total root length and arbuscular mycorrhizal fungi on the nutrient and water efficiency in summer wheat. In: Crop Productivity and Sustainability—Shaping the Future: Abstracts of the 2nd International Crop Science Congress, New Delhi, India, Vol I, p 105

    Google Scholar 

  • Marais GF, Marais AS, Groenewald JZ (2001) Evaluation and reduction of Lr19-149, a recombined form of the Lr19 translocation of wheat. Euphytica 121:289–295

    Article  CAS  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13:26–27

    Google Scholar 

  • McIntosh RA, Dyck PL, Green GJ (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust J Agric Res 28:37–45

    Article  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of the 11th international wheat genetics symposium Sydney, Australia. Sydney University Press, Australia

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Rogers WJ, Morris CF, Devos KM (2010) Catalogue of gene symbols for wheat (http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp)

  • Mettin D, Blüthner WD, Schlegel G (1973) Additional evidence on spontaneous 1BL.1RS wheat rye substitutions. Proceedings of 4th International Wheat Genetics Symposium, Columbia, USA, 179–184

    Google Scholar 

  • Miralles DJ, Resnicoff E, Carretero R (2007) Yield improvement associated with Lr19 translocation in wheat. In: Spiertz JHJ JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, New York, pp 171–178

    Chapter  Google Scholar 

  • Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305

    Article  Google Scholar 

  • Molnár-Láng M, Cseh A, Szakács É, Molnár I (2010) Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theor Appl Genet 120(8):1535–1545. doi:10.1007/S00122-010-1274-0

    Article  PubMed  Google Scholar 

  • Molnár-Láng M, Molnár I, Szakács E, Linc G, Bedő Z (2014) Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Springer Science + Business Media, Dordrecht, pp 255–283. doi:10.1007/978-94-007-7572-5

    Chapter  Google Scholar 

  • Monneveux P, Reynolds MP, Aguilar JG, Singh RP (2003) Effect of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphological traits under different environments. Plant Breed 122:379–384

    Article  CAS  Google Scholar 

  • Nedel JL (1994) Genetic improvement in grain yield of wheat cultivars released between 1940 and 1992. Assuit J Agric Sci 29:1565–1570

    Google Scholar 

  • Ogbonnaya FC (2011) Development, management and utilization of synthetic hexaploids in wheat improvement. In: Bonjean AP, Angus WJ, van Ginkel M (eds) The world wheat book: a history of wheat breeding, vol 2. Lavoisier, Paris, pp 823–849

    Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830

    Article  CAS  Google Scholar 

  • Parry MAJ, Hawkesford MJ (2010) Food security: increasing yield and improving resource use efficiency. Proc Nutr Soc 69:1–9

    Article  Google Scholar 

  • Patrignani A, Lollato PL, Ochsner TE, Godsey CB, Edward JT (2014) Yield gap and production gap of rainfed winter wheat in the southern Great Plains. Agron J 106:1329–1339

    Article  Google Scholar 

  • Peltonen-Sainio P, Peltonen J (1994) Progress since the 1930s in breeding for yield, its components, and quality traits of spring wheat in Finland. Plant Breed 113:177–186

    Article  Google Scholar 

  • Perry MW, Antuono MFD (1989) Yield improvement and characteristics of some Aust. spring wheat cultivars between 1860 and 1982. Aust J Agric Res 40:457–472

    Google Scholar 

  • Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340

    Article  Google Scholar 

  • Rajaram S (2001) Prospects and promise of wheat breeding in the 21st century. Euphytica 119:3–15

    Article  Google Scholar 

  • Rejesus RM, van Ginkel M, Smale M (1996) Wheat breeders’ perspectives on genetic diversity and gemplasm use: findings from an international survey. Wheat Special Report. No.40, Mexico, D.F.: CIMMYT pp 129-147

    Google Scholar 

  • Reynolds MP, Calderini DF, Condon AG, Rajaram S (2001) Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum. Euphytica 119:137–141

    Article  CAS  Google Scholar 

  • Richards RA (1992) The effect of dwarfing genes in spring wheat in dry environments I. agronomic characteristics. Aust J Agric Res 43:517–527

    Article  Google Scholar 

  • Riggs TJ, Hanson PR, Start ND, Milles DM, Morgan CL, Ford MA (1981) Comparison of spring barley varieties grown in England and Wales between 1880 and 1980. J Agric Sci 97:599–610

    Article  Google Scholar 

  • Romero CA, Frey KJ (1966) Mass selection for plant height in oat populations. Crop Sci 6:283–287

    Article  Google Scholar 

  • Schlegel R, Korzun V (1997) About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed 116:537–540

    Article  Google Scholar 

  • Schmidt JW (1984) Genetic contributions to yield gains in wheat. In: Fehr WR (ed) Genetic contributions to yield gains of five major crop plants. CSSA Special Publication Number 7, Madison, pp 89–101

    Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp Columbia, MD University of Missouri pp 191–199

    Google Scholar 

  • Sears ER (1977) Analysis of wheat-Agropyron recombinant chromosomes. In: Proc 8th Eucarpia Congr, Madrid Spain pp 63–72

    Google Scholar 

  • Sebesta EE, Wood EA, Porter DR, Webster JA, Smith EL (1995) Registration of ‘Amigo’ wehat germplasm resistance to greenbug. Crop Sci 35:293

    Article  Google Scholar 

  • Sestili F, Botticella E, Bedő Z, Phillips A, Lafiandra D (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breed 25:145–154

    Article  CAS  Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31

    Article  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Article  Google Scholar 

  • Shen X, Ohm H (2007) Molecular mapping of Thinopyrum derived Fusarium head blight resistance in common wheat. Mol Breed 20:131–140

    Article  CAS  Google Scholar 

  • Shewry PR, Parmar S, Pappin DJC (1987) Characterization and genetic control of the prolamins of Haynaldia villosa: relationship to cultivated species of the Triticeae (rye, wheat and barley). Biochem Genet 25:309–325

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Sabelli PA, Parmar S, Lafiandra D (1991) λ-type prolamins are encoded by genes on chromosomes 4Ha and 6Ha of Haynaldia villosa Schur (syn. Dasypyrum villosum L.). Biochem Genet 29:207–211

    Article  CAS  PubMed  Google Scholar 

  • Siddique KHM, Belford RK, Perry MW, Tennant D (1989) Growth, development and light interception of old and modern wheat cultivars in a Mediterranean-type environment. Aust J Agric Res 40:473–487

    Google Scholar 

  • Sinha SK, Aggarwal PK (1980) Physiological basis of achieving the productivity potential of wheat in India. Indian J Genet Plant Breed 40:375–384

    Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotech 23:75–81

    Article  CAS  Google Scholar 

  • Slafer GA, Andrade FH (1989) Genetic improvement in bread wheat (T. aestivum) yield in Argentina. Field Crops Res 21:289–296

    Article  Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Tsunewaki K (1964) Genetic studies of a 6x derivative from an 8x triticale. Can J Genet Cytol 6:1–11

    Article  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674

    Article  CAS  Google Scholar 

  • Veisz O, Harnos N, Szunics L, Tischner T (1996) Overwintering of winter cereals in Hungary in the case of global warming. Euphytica 92:249–253

    Article  Google Scholar 

  • Vida GY, Gál M, Uhrin A, Veisz O, Syed NH, Flavell AJ, Wang Z, Bedő Z (2009) Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica 170:67–76

    Article  CAS  Google Scholar 

  • Villareal RL, del Toro E, Mujeeb-Kazi A, Rajaram S (1995) The 1BL/1RS chromosome translocation effect on yield characterization in a Triticum aestivum L. cross. Plant Breed 114:497–500

    Article  Google Scholar 

  • Waddington SR, Ransom JK, Osmanzai M, Saunders DA (1986) Improvement int he yield potential of bread wheat adopted to Northwest Mexico. Crop Sci 26:698–703

    Article  Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Whelan EDP, Conner RL, Thomas JB, Kuzyk AD (1986) Transmission of a wheat alien translocation with resistance to the wheat curl mite in common wheat, Triticum aestivum L. Can J Genet Cytol 28:294–297

    Article  Google Scholar 

  • White EM, Wilson FEA (2006) Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties. Irish J Agric Food Res 45:85–101

    Google Scholar 

  • Worland T, Snape JW (2001) Genetic basis of worldwide wheat varietal improvement. In: Bonjean A, Angus JW (eds) The world wheat book, a history of wheat breeding. Lavoisier Publishing, Paris, pp 59–94

    Google Scholar 

  • Zeller FJ (1972) Cytologischer Nachweis einer Chromosomensubstitution in der Weizenstamm Salzmünde 14/44 (T. aestivum L.). Z Pflanzenzühtg 67:90–94

    Google Scholar 

  • Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. Proceedings 4th International Wheat Genet Symposium Columbia, MO pp 209–222

    Google Scholar 

  • Zhang R, Zhang M, Wang X, Chen P (2014) Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theor Appl Genet 127:523–533

    Article  CAS  Google Scholar 

  • Zhukovsky PM (1957) Wheat in the USSR. State Publishing House of Agricultural Literature, Moscow, Leningrad, p 632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Bedő .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bedő, Z., Láng, L. (2015). Wheat Breeding: Current Status and Bottlenecks. In: Molnár-Láng, M., Ceoloni, C., Doležel, J. (eds) Alien Introgression in Wheat. Springer, Cham. https://doi.org/10.1007/978-3-319-23494-6_3

Download citation

Publish with us

Policies and ethics