Skip to main content

Probabilistic Constraint Programming for Parameters Optimisation of Generative Models

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9273))

Included in the following conference series:

  • 3866 Accesses

Abstract

Complex networks theory has commonly been used for modelling and understanding the interactions taking place between the elements composing complex systems. More recently, the use of generative models has gained momentum, as they allow identifying which forces and mechanisms are responsible for the appearance of given structural properties. In spite of this interest, several problems remain open, one of the most important being the design of robust mechanisms for finding the optimal parameters of a generative model, given a set of real networks. In this contribution, we address this problem by means of Probabilistic Constraint Programming. By using as an example the reconstruction of networks representing brain dynamics, we show how this approach is superior to other solutions, in that it allows a better characterisation of the parameters space, while requiring a significantly lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P.W.: More is different. Science 177, 393–396 (1972)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Newman, M.E.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Costa, L.D.F., Oliveira Jr, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Advances in Physics 60, 329–412 (2011)

    Article  Google Scholar 

  5. Zanin, M., Lillo, F.: Modelling the air transport with complex networks: A short review. The European Physical Journal Special Topics 215, 5–21 (2013)

    Article  Google Scholar 

  6. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10, 186–198 (2009)

    Article  Google Scholar 

  7. Papo, D., Zanin, M., Pineda-Pardo, J.A., Boccaletti, S., Buldú, J.M.: Functional brain networks: great expectations, hard times and the big leap forward. Philosophical Transactions of the Royal Society of London B: Biological Sciences 369, 20130525 (2014)

    Article  Google Scholar 

  8. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)

    Article  MATH  Google Scholar 

  9. Lhomme, O.: Consistency techniques for numeric CSPs. In: Proc. of the 13th IJCAI, pp. 232–238 (1993)

    Google Scholar 

  10. Benhamou, F., McAllester, D., van Hentenryck, P.: CLP(intervals) revisited. In: ISLP, pp. 124–138 (1994)

    Google Scholar 

  11. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM Journal on Numerical Analysis 34, 797–827 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Granvilliers, L., Benhamou, F.: Algorithm 852: realpaver: an interval solver using constraint satisfaction techniques. ACM Transactions on Mathematical Software 32, 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  13. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising hull and box consistency. In: Procs. of ICLP, pp. 230–244 (1999)

    Google Scholar 

  14. Moore, R.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  15. Carvalho, E.: Probabilistic constraint reasoning. PhD Thesis (2012)

    Google Scholar 

  16. Halpern, J.Y.: Reasoning about uncertainty. MIT, Cambridge (2003)

    MATH  Google Scholar 

  17. Hammersley, J.M., Handscomb, D.C.: Monte Carlo methods. Methuen, London (1964)

    Book  MATH  Google Scholar 

  18. Carvalho, E., Cruz, J., Barahona, P.: Probabilistic constraints for nonlinear inverse problems. Constraints 18, 344–376 (2013)

    Article  MathSciNet  Google Scholar 

  19. Maestú, F., Fernández, A., Simos, P.G., Gil-Gregorio, P., Amo, C., Rodriguez, R., Arrazola, J., Ortiz, T.: Spatio-temporal patterns of brain magnetic activity during a memory task in Alzheimer’s disease. Neuroreport 12, 3917–3922 (2001)

    Article  Google Scholar 

  20. Stam, C.J., Van Dijk, B.W.: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D: Nonlinear Phenomena 163, 236–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, S., Duan, C.: Generalized synchronization in chaotic systems. Chaos, Solitons & Fractals 9, 1703–1707 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Newman, M.E.: Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E 64, 016131 (2001)

    Google Scholar 

  23. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Physical Review Letters 87, 198–701 (2001)

    Article  Google Scholar 

  24. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences 91, 5033–5037 (1994)

    Article  Google Scholar 

  25. Rad, A.A., Sendiña-Nadal, I., Papo, D., Zanin, M., Buldu, J.M., del Pozo, F., Boccaletti, S.: Topological measure locating the effective crossover between segregation and integration in a modular network. Physical Review Letters 108, 228701 (2012)

    Article  Google Scholar 

  26. Vértes, P.E., Alexander-Bloch, A.F., Gogtay, N., Giedd, J.N., Rapoport, J.L., Bullmore, E.T.: Simple models of human brain functional networks. Proceedings of the National Academy of Sciences 109, 5868–5873 (2012)

    Article  Google Scholar 

  27. Vértes, P.E., Alexander-Bloch, A., Bullmore, E.T.: Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130531 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Zanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zanin, M., Correia, M., Sousa, P.A.C., Cruz, J. (2015). Probabilistic Constraint Programming for Parameters Optimisation of Generative Models. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds) Progress in Artificial Intelligence. EPIA 2015. Lecture Notes in Computer Science(), vol 9273. Springer, Cham. https://doi.org/10.1007/978-3-319-23485-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23485-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23484-7

  • Online ISBN: 978-3-319-23485-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics