Skip to main content

Computer Assisted Hip Resurfacing Using Patient-Specific Instrument Guides

  • Chapter
  • First Online:
  • 1298 Accesses

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 23))

Abstract

Hip resurfacing is considered to be a viable alternative to total hip replacement in the treatment of osteoarthritis, especially for younger and more active patients. There are, however, several disadvantages reported in the literature, due to difficult surgical exposure and the technical challenges of the intraoperative procedure. Surgical errors, such as notching of the femoral neck, tilting of the femoral component in excess varus, or improper prosthesis seating, can result in early failure of the procedure. In this chapter we discuss the use of patient-specific instrument guides as an accurate and reliable image-guided method for the placement of the femoral and acetabulum components during hip resurfacing. The outcome of patient-specific guided procedures depends on many factors, starting with the accurate depiction of the anatomy in a preoperative image modality, the careful selection of registration surfaces for the guide, the accuracy of the guide creation, as well as the reliability of the guide registration intraoperatively. We will discuss in detail how current research is addressing these points in patient-specific instrument guided hip resurfacing applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The femoral offset is defined as the distance between the center of rotation of the femoral head and the long shaft axis of the femur, measured perpendicular to the femoral long axis.

  2. 2.

    Contact between the femoral and acetabulum component at the edge of the acetabulum component.

  3. 3.

    Unpaired, one-tailed Student’s t-Test.

  4. 4.

    To guarantee the best possible surgical treatment for the patient, the surgeon removed the osteophyte completely or partially to correct the fit of the guide during the surgery.

References

  1. Amstutz HC, Clarke IC, Christie J, Graff-Radford A (1977) Total hip articular replacement by internal eccentric shells: the Tharies approach to total surface replacement arthroplasty. Clin Orthop 128:261–284

    Google Scholar 

  2. Amstutz HC, Le Duff MJ (2012) Hip resurfacing; a 40-year perspective. HSS J 8(3):275–282

    Article  Google Scholar 

  3. Amstutz HC, Takamura K, Le Duff M (2011) The effect of patient selection and surgical technique on the results of conserve plus hip resurfacing—3.5 to 14 year follow-up. Orthop Clin North Am 142(2):133–142

    Article  Google Scholar 

  4. Bradley GW, Freeman MA (1983) Revision of failed hip resurfacing. Clin Orthop Relat Res 178:236–240

    Google Scholar 

  5. Klotz MCM, Breusch SJ, Hassenpflug M, Bitsch RG (2012) Results of 5 to 10-year follow-up after hip resurfacing. A systematic analysis of the literature on long-term results. Orthopade 41(6):442–451

    Article  Google Scholar 

  6. Vail TP, Mina CA, Yergler JD, Pietrobon R (2006) Metal-on-metal hip resurfacing compares favorably with THA at 2 years followup. Clin Orthop Relat Res 453:123–131

    Article  Google Scholar 

  7. Sandiford NA, Ahmed S, Doctor C, East DJ, Miles K, Apthrop HD (2014) Patient satisfaction and clinical results at a mean eight years following BHR arthroplasty: results from a district general hospital. Hip Int 24(3):249–255

    Article  Google Scholar 

  8. Bow JK, Rudan JF, Grant HJ, Mann SM, Kunz M (2012) Are hip resurfacing arthroplasties meeting the needs of our patients? A 2-year follow-up study. J Arthroplasty 27(6):684–689

    Article  Google Scholar 

  9. Mont MA, Ragland PS, Etienne G, Seyler TM, Schmalzried TP (2006) Hip resurfacing arthroplasty. J Am Acad Orthop Surg 14(8):454–463

    Google Scholar 

  10. Amstutz HC, Campbell PA, Le Duff MJ (2004) Fracture of the neck of the femur after surface arthroplasty of the hip. J Bone Joint Surg 86-A(9):1874–1877

    Google Scholar 

  11. Siebel T, Maubach S, Morlock MM (2006) Lessons learned from early clinical experience and results of 300 ASR hip resurfacing implantations. Proc Inst Mech Eng [H] 220(2):345–353

    Article  Google Scholar 

  12. Mellon SJ, Grammatopoulos G, Andersen MS, Pandit HG, Gill HS, Murray DW (2015) Optimal acetabular component orientation estimated using edge-loading and impingement risk in patients with metal-on-metal hip resurfacing arthroplasty. Biomechanics 48(2):318–323

    Article  Google Scholar 

  13. Davies ET, Olsen M, Zdero R, Papini M, Waddell JP, Schemitsch EH (2009) A biomechanical and finite element analysis of femoral neck notching during hip resurfacing. J Biomech Eng 131(4):041002-1–041002-8

    Google Scholar 

  14. Beaule PE, Lee JLL, Le Duff MJ, Amstutz HC, Ebramzadeh E (2004) Orientation of the femoral component in surface arthroplasty of the hip. J Bone Joint Surg 86-A(9):2015–2021

    Google Scholar 

  15. Long JP, Barel DL (2006) Surgical variables affect the mechanics of a hip resurfacing system. Clin Orthop Relat Res 453:115–122

    Article  Google Scholar 

  16. Konyves A, Bannister GC (2005) The importance of leg length discrepancy after total hip arthroplasty. J Bone and Joint Surgery 87-B(2):155–157

    Article  Google Scholar 

  17. Lai KA, Lin CJ, Jou IM, Su FC (2001) Gait analysis after total hip arthroplasty with leg length equalization in women with unilateral congenital complete dislocation of the hip: comparison with untreated patients. J Orthop Res 19:1147–1152

    Article  Google Scholar 

  18. McGrory BJ, Morrey BF, Cahalan TD, An K-N, Cabanela ME (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg 77-B(6):865–869

    Google Scholar 

  19. Fackler CD, Poss R (1980) Dislocation in total hip arthroplasties. Clin Orthop Relat Res 151:169–178

    Google Scholar 

  20. Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty 20(4):414–420

    Article  Google Scholar 

  21. Silva M, Lee KH, Heisel C, Dela Rosa MA, Schmalzried TP (2004) The biomechanical results of total hip resurfacing arthroplasty. J Bone and Joint Surg 86-A(1):40–46

    Google Scholar 

  22. Loughead JM, Chesney D, Holland JP, McCaskie AW (2005) Comparison of offset in Birmingham hip resurfacing and hybrid total hip arthroplasty. J Bone and Joint Surg 87-B(2):163–166

    Article  Google Scholar 

  23. Girard J, Lavigne M, Vendittoli P-A, Roy AG (2006) Biomechanical reconstruction of the hip. J Bone Joint Surg 88-B(6):721–726

    Article  Google Scholar 

  24. Ahmad R, Gillespie G, Annamalai S, Barakat MJ, Ahmed SMY, Smith LK, Spencer RF (2009) Leg length and offset following hip resurfacing and hip replacement. Hip Int 19(2):136–140

    Google Scholar 

  25. Kwon Y-M, Ostlere SJ, McLardy-Smith P, Athanasou NA, Gill HS, Murray DW (2011) “Asymptomatic” pseudotumors after metal-on-metal hip resurfacing arthroplasty. Prevalence and metal ion study. J Arthroplasty 26(4):511–518

    Article  Google Scholar 

  26. Kwon YM, Xia Z, Glyn-Jones S, Beard D, Gill HS, Murray DW (2009) Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed Mater 4(2):025018

    Article  Google Scholar 

  27. Langton DJ, Sprowson AP, Joyce TJ, Reed M, Carluke I, Partington P, Nargol AV (2009) Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and Birmingham hip resurfacing arthroplasties. J Bone Joint Surg 91-B(10):1287–1295

    Article  Google Scholar 

  28. Kwon YM, Glyn-Jones S, Simpson DJ, Kamali A, McLardy-Smith P, Gill HS, Murray DW (2010) Analysis of wear retrieved metal-on-metal hip resurfacing implants revised due to pseudotumours. J Bone Joint Surg 92-B(3):356–361

    Article  Google Scholar 

  29. Langton DJ, Joyce TJ, Mangat N, Lord J, Van Orsouw M, De Smet K, Nargol AV (2011) Reducing metal ion release following hip resurfacing arthroplasty. Orthop Clin North Am 42(2):169–180

    Article  Google Scholar 

  30. Kwon YM, Mellon SJ, Monk P, Murray DW, Gill HS (2012) In vivo evaluation of edge-loading in metal-on-metal hip resurfacing patients with pseudotumours. Bone Joint Res 1(4):42–49

    Article  Google Scholar 

  31. Mellon SJ, Kwon YM, Glyn-Jones S, Murray DW, Gill HS (2011) The effect of motion patterns on edge-loading of metal-on-metal hip resurfacing. Med Eng Phys 33(10):1212–1220

    Article  Google Scholar 

  32. De Haan R, Pattyn C, Gill HS, Murray DW, Campbell PA, De Smet K (2008) Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg 90-B(10):1291–1297

    Article  Google Scholar 

  33. De Haan R, Campbell PA, Su EP, De Smet KA (2008) Revision of metal-on-metal resurfacing arthroplasty of the hip: the influence of malpositioning of the components. J Bone Joint Surg 90-B(9):1158–1163

    Article  Google Scholar 

  34. Hart AJ, Satchithananda K, Liddle AD, Sabah SA, McRobbie D, Henckel J, Cobb JP, Skinner JA, Mitchell AW (2012) Pseudotumors in association with well-functioning metal-on-metal hip prostheses: a case-control study using three-dimensional computed tomography and magnetic resonance imaging. J Bone Joint Surg 94-A(4):317–325

    Google Scholar 

  35. Liu F, Gross TP (2012) A safe zone for acetabular component position in metal-on-metal hip resurfacing arthroplasty: winner of the 2012 HAP PAUL award. J Arthroplasty 28:1224–1230

    Article  Google Scholar 

  36. Arndt JM, Wera GD, Goldberg VM (2013) A initial experience with hip resurfacing versus cementless total hip arthroplasty. HSSJ 9:145–149

    Article  Google Scholar 

  37. Hess T, Gampe T, Koettgen C, Szawloeski B (2004) Intraoperative navigation for hip resurfacing. Methods and first results. Orthopade 33(10):1183–1193

    Article  Google Scholar 

  38. El Hachim M, Penasse M (2014) Our midterm results of the Birmingham hip resurfacing with and without navigation. J Arthroplasty 29:808–812

    Article  Google Scholar 

  39. Bailey C, Gul R, Falworth M, Zadow S, Oakeshott R (2009) Component alignment in hip resurfacing using computer navigation. Clin Orthop Relat Res 467:917–922

    Article  Google Scholar 

  40. Hodgson A, Helmy N, Masri BA, Greidanus NV, Inkpen KB, Duncan CP, Garbuz DS, Anglin C (2007) Comparative repeatability of guide-pin axis positioning in computer-assisted and manual femoral head resurfacing arthroplasty. Proc Inst Mech Eng H 221(7):713–724

    Article  Google Scholar 

  41. Cobb JP, Kannan V, Brust K, Thevendran G (2007) Navigation reduces the learning curve in resurfacing total hip arthroplasty. Clin Orthop Relat Res 463:90–97

    Google Scholar 

  42. Romanowski JR, Swank ML (2008) Imageless navigation in hip resurfacing: avoiding component malposition during the surgeon learning curve. J Bone Joint Surg 90-A(Suppl 3):65–70

    Google Scholar 

  43. Seyler TM, Lai LP, Sprinkle DI, Ward WG, Jinnah RH (2008) Does computer-assisted surgery improve accuracy and decrease the learning curve in hip resurfacing? A radiographic analysis. J Bone Joint Surg 90-A(Suppl 3):71–80

    Google Scholar 

  44. Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G, Staudte HW (1998) Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res 354:28–38

    Article  Google Scholar 

  45. Birnbaum K, Schkommodau E, Decker N, Prescher A, Klapper U, Radermacher K (2001) Computer-assisted orthopedic surgery with individual templates and comparison to conventional operation method. Spine 26(4):365–370

    Article  Google Scholar 

  46. Brown GA, Firoozbakhsh K, DeCoster TA, Reyna JR Jr, Moneim M (2003) Rapid prototyping: the future of trauma surgery? J Bone Joint Surg 85-A(Suppl 4):49–55

    Google Scholar 

  47. Owen BD, Christensen GE, Reinhardt JM, Ryken TC (2007) Rapid prototype patient-specific drill template for cervical pedicle screw placement. Comput Aided Surg 12(5):303–308

    Article  Google Scholar 

  48. Boonen B, Schotanus MG, Kort NP (2012) Preliminary experience with the patient-specific templating total knee arthroplasty. Acta Orthop 83(4):387–393

    Article  Google Scholar 

  49. Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470(1):99–107

    Article  Google Scholar 

  50. Moopanar TR, Amaranath JE, Sorial RM (2014) Component position alignment with patient-specific jigs in total knee arthroplasty. ANZ J Surg 84(9):628–632

    Article  Google Scholar 

  51. Levy JC, Everding NG, Frankle MA, Keppler LJ (2014) Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty. J Shoulder Elbow Surg 23(10):1563–1567

    Article  Google Scholar 

  52. Walch G, Vezeridis PS, Boileau P, Deransart P, Chaoui J (2014) Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study. J Shoulder Elbow Surg 24(20):302–309

    Google Scholar 

  53. Du H, Tian XX, Li TS, Yang JS, Li KH, Pei GX, Xie L (2013) Use of patient-specific templates in hip resurfacing arthroplasty: experience from sixteen cases. Int Orthop 37(5):777–782

    Article  Google Scholar 

  54. Zhang YZ, Lu S, Yang Y, Xu YQ, Li YB, Pei GX (2011) Design and primary application of computer-assisted, patient-specific navigational templates in metal-on-metal hip resurfacing arthroplasty. J Arthroplasty 26(7):1083–1087

    Article  Google Scholar 

  55. Olsen M, Naudie DD, Edwards RW, Schemitsch EH (2014) Evaluation of a patient specific femoral alignment guide for hip resurfacing. J Arthroplasty 29:590–595

    Article  Google Scholar 

  56. Kitada M, Sakai T, Murase T, Hanada T, Nakamura N, Sugano N (2013) Validation of the femoral component placement during hip resurfacing: a comparison between conventional jig, patient-specific template, and CT-based navigation. Int J Med Robotics Comput Assist Surg 9:223–229

    Article  Google Scholar 

  57. Sakai T, Hanada T, Murase T, Kitada M, Hamada H, Yoshikawa H, Sugano N (2014) Validation of patient specific guides in total hip arthoplasty. Int J Med Robotocs Comput Assist Surg 10:113–120

    Article  Google Scholar 

  58. Kunz M, Rudan JF, Xenoyannis GL, Ellis RE (2010) Computer-assisted hip resurfacing using individualized drill templates. J Arthroplasty 25(4):600–606

    Article  Google Scholar 

  59. Kunz M, Rudan JF, Wood GCA, Ellis RE (2011) Registration stability of physical templates in hip surgery. Stud Health Technol Inform 162:283–289

    Google Scholar 

  60. Ma B, Ellis RE (2003) Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience. Med Imag Anal 7(3):237–250

    Article  Google Scholar 

  61. Hananouchi T, Saito M, Koyama T, Hagio K, Murase T, Sugano N, Yoshikawa H (2008) Tailor-made surgical guide based on rapid prototyping technique for cup insertion in total hip arthroplasty. Int J Med Robotics Comput Assist Surgery 5:164–169

    Article  Google Scholar 

  62. Hananouchi T, Saito M, Koyama T, Sugano N, Yoshikawa H (2010) Tailor-based surgical guide reduces incidence of outliers of cup placement. Clin Orthop Relat Res 468:1088–1095

    Article  Google Scholar 

  63. Zhang YZ, Chen B, Lu S, Yang Y, Zhao JM, Liu R, Li YB, Pai GX (2011) Preliminary application of computer-assisted patient-specific acetabulum navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robotics Comput Assist Surg 7:469–474

    Article  Google Scholar 

  64. Buller L, Smith T, Bryan J, Klika A, Barsoum W, Innotti JP (2013) The use of patient-specific instrumentation improves the accuracy of acetabular component placement. J Arthroplasty 28:631–636

    Article  Google Scholar 

  65. Small T, Krebs V, Molloy R, Bryan J, Klika AK, Barsoum WK (2014) Comparison of acetabular shell position using patient specific instrument vs. standard surgical instruments: A randomized clinical trial. J Arthroplasty 29:1030–1037

    Article  Google Scholar 

  66. Leeuwen JA, Grøgaard B, Nordsletten L, Röhrl SM (2014) Comparison of planned and achieved implant position in total knee arthroplasty with patient-specific positioning guides. Acta Orthop 11:1–6

    Google Scholar 

  67. Cavaignac E, Pailhé R, Laumond G, Murgier J, Reina N, Laffosse JM, Bérard E, Chiron P (2014) Evaluation of the accuracy of patient-specific cutting blocks for total knee arthroplasty: a meta-analysis. Int Orthop (Epub ahead of print)

    Google Scholar 

  68. Voleti PB, Hamula MJ, Baldwin KD, Lee GC (2014) Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty 29(9):1709–1712

    Article  Google Scholar 

  69. Turmezei TD, Poole KE (2011) Computed tomography of subchrondral bone and osteophytes in hip osteoarthritis: the shape of things to come? Front Endocrinol (Lausanne) 13(2):97

    Google Scholar 

  70. Gelse K, Soeder S, Eger W, Dietmar T, Aigner T (2003) Osteohyte development—molecular characterization of different stages. Osteoarthritis cartilage 11(2):141–148

    Article  Google Scholar 

  71. Aigner T, Sachsse A, Gebhard PM, Roach HI (2006) Osteoarthritis: pathobiology—targets and ways for therapeutic intervention. Adv Drug Deliv Rev 58(2):128–149

    Article  Google Scholar 

  72. Baxter BS, Sorenson JA (1981) Factors affecting the measurement of size and CT number in computed tomography. Invest Radiol 16:337–341

    Article  Google Scholar 

  73. Horn BKP (1987) Closed form solution of absolute orientation using unit quaternions. J Opt Soc Amer A 4(44):629–642

    Article  Google Scholar 

  74. Kunz M, Balaketheeswaran S, Ellis RE, Rudan JF (2015) The influence of osteophyte depiction in CT for patient-specific guided hip resurfacing procedures. Int J Comput Assist Radiol Surg (Accepted for publication with minor revisions)

    Google Scholar 

  75. Cerha O, Kirschner S, Guenther K-P, Luetzner J (2009) Cost analysis for navigation in knee endoprothetics. Orthopaede 38(12):1235–1240 (Article in German)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Paul St. John and Joan Willison for their always-enthusiastically technical support, and would like to thank the surgical and perioperative teams of Kingston General Hospital, as well as the Human Mobility Research Centre at Queen’s University and Kingston General Hospital for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kunz, M., Rudan, J.F. (2016). Computer Assisted Hip Resurfacing Using Patient-Specific Instrument Guides. In: Zheng, G., Li, S. (eds) Computational Radiology for Orthopaedic Interventions. Lecture Notes in Computational Vision and Biomechanics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-23482-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23482-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23481-6

  • Online ISBN: 978-3-319-23482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics