Skip to main content

The ABCG2 Multidrug Transporter

  • Chapter
  • First Online:
ABC Transporters - 40 Years on

Abstract

ABCG2 is an ATP-binding cassette (ABC) half-transporter localized to the cell membrane and important in normal physiology, in normal tissue protection including in the maternal-fetal barrier and the blood brain barrier, and potentially in multidrug resistance. Dimerization is required for function. Polymorphic variants have been described that impair trafficking to the cell surface, and one, Q141K, has been associated with a higher incidence of gout in individuals who are carriers. Working in concert with ABCB1 (P-glycoprotein), ABCG2 is expressed at high levels in the vascular endothelium of the brain and pumps xenobiotics and chemotherapeutics back into the bloodstream. ABCG2 expression is also found at high levels in some cancer types including pancreatic and liver cancers. Whether its expression in these tumor types contributes to drug resistance via drug efflux and reduction in drug accumulation is a question that remains unanswered. Studies of drug accumulation, such as through imaging solid tumors in patients, are needed to answer this question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36(3):437–449. doi:10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  • Adachi Y, Suzuki H, Schinkel AH, Sugiyama Y (2005) Role of breast cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and sulfate conjugates from enterocytes to intestinal lumen. Mol Pharmacol 67(3):923–928

    Article  CAS  PubMed  Google Scholar 

  • Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA et al (2008) The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol 66(2):233–239 doi:BCP3184 [pii]. 10.1111/j.1365-2125.2008.03184.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JD, Jackson SC, Schinkel AH (2002a) A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for Doxorubicin resistance. Cancer Res 62(8):2294–2299

    CAS  PubMed  Google Scholar 

  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G et al (2002b) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1(6):417–425

    CAS  PubMed  Google Scholar 

  • Amiri-Kordestani L, Basseville A, Kurdzeil K, Fojo A, Bates S (2012) Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist Updat

    Google Scholar 

  • Aust S, Obrist P, Jaeger W, Klimpfinger M, Tucek G, Wrba F et al (2004) Subcellular localization of the ABCG2 transporter in normal and malignant human gallbladder epithelium. Lab Invest 84(8):1024–1036

    Article  CAS  PubMed  Google Scholar 

  • Backstrom G, Taipalensuu J, Melhus H, Brandstrom H, Svensson AC, Artursson P et al (2003) Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci 18(5):359–364 doi:S0928098703000381 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bakhsheshian J, Wei BR, Chang KE, Shukla S, Ambudkar SV, Simpson RM et al (2013a) Bioluminescent imaging of drug efflux at the blood-brain barrier mediated by the transporter ABCG2. Proc Natl Acad Sci USA 110(51):20801–20806 doi:1312159110 [pii]. 10.1073/pnas.1312159110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhsheshian J, Hall MD, Robey RW, Herrmann MA, Chen JQ, Bates SE et al (2013b) Overlapping substrate and inhibitor specificity of human and murine ABCG2. Drug Metab Dispos 41(10):1805–1812 doi:dmd.113.053140 [pii]. 10.1124/dmd.113.053140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT et al (2004) The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur J Cancer 40(14):2064–2070

    Article  CAS  PubMed  Google Scholar 

  • Basseville A, Tamaki A, Ierano C, Trostel S, Ward Y, Robey RW et al (2012) Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res 72(14):3642–3651 doi:0008-5472.CAN-11-2008 [pii]. 10.1158/0008-5472.CAN-11-2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates SE, Amiri-Kordestani L, Giaccone G (2012) Drug development: portals of discovery. Clin Cancer Res 18(1):23–32. doi:10.1158/1078-0432.CCR-11-1001

    Article  CAS  PubMed  Google Scholar 

  • Bauer HC, Krizbai IA, Bauer H, Traweger A (2014) “You Shall Not Pass”-tight junctions of the blood brain barrier. Front Neurosci 8:392. doi:10.3389/fnins.2014.00392

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatia A, Schafer HJ, Hrycyna CA (2005) Oligomerization of the human ABC transporter ABCG2: evaluation of the native protein and chimeric dimers. Biochemistry 44(32):10893–10904. doi:10.1021/bi0503807

    Article  CAS  PubMed  Google Scholar 

  • Bramwell VH, Morris D, Ernst DS, Hings I, Blackstein M, Venner PM et al (2002) Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clin Cancer Res 8(2):383–393

    CAS  PubMed  Google Scholar 

  • Cabezas R, Avila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211. doi:10.3389/fncel.2014.00211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y et al (2003) Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 63(14):4048–4054

    CAS  PubMed  Google Scholar 

  • Chen Y, Agarwal S, Shaik N, Chen C, Yang Z, Elmquist W (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 330(3):956–963 doi:jpet.109.154781 [pii]. 10.1124/jpet.109.154781

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Chen H, Zang X, Chen M, Jiang H, Han S et al (2013) Expression of efflux transporters in human ocular tissues. Drug Metab Dispos 41(11):1934–1948. doi:10.1124/dmd.113.052704

    Article  CAS  PubMed  Google Scholar 

  • Chew SC, Singh O, Chen X, Ramasamy RD, Kulkarni T, Lee EJ et al (2011) The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Cancer Chemother Pharmacol 67(6):1471–1478. doi:10.1007/s00280-011-1625-9

    Article  CAS  PubMed  Google Scholar 

  • Choo EF, Ly J, Chan J, Shahidi-Latham SK, Messick K, Plise E et al (2014) Role of P-glycoprotein on the brain penetration and brain pharmacodynamic activity of the MEK inhibitor cobimetinib. Mol Pharm 11(11):4199–4207. doi:10.1021/mp500435s

    Article  CAS  PubMed  Google Scholar 

  • Chuan Tang S, Nguyen LN, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2014) Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer 134(6):1484–94. doi:10.1002/ijc.28475

    Google Scholar 

  • Cole SP (2014) Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J Biol Chem 289(45):30880–30888. doi:10.1074/jbc.R114.609248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooray HC, Blackmore CG, Maskell L, Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. NeuroReport 13(16):2059–2063

    Article  CAS  PubMed  Google Scholar 

  • Cornford EM, Hyman S (2005) Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx 2(1):27–43. doi:10.1602/neurorx.2.1.27

    Article  PubMed  PubMed Central  Google Scholar 

  • Cripe LD, Uno H, Paietta EM, Litzow MR, Ketterling RP, Bennett JM et al (2010) Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood 116(20):4077–85. doi:blood-2010-04-277269 [pii]. 10.1182/blood-2010-04-277269

  • Cusatis G, Gregorc V, Li J, Spreafico A, Ingersoll RG, Verweij J et al (2006) Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 98(23):1739–1742 doi:98/23/1739 [pii]. 10.1093/jnci/djj469

    Article  CAS  PubMed  Google Scholar 

  • de Bruin M, Miyake K, Litman T, Robey R, Bates SE (1999) Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter. MXR. Cancer Lett 146(2):117–126 doi:S0304383599001822 [pii]

    Article  PubMed  Google Scholar 

  • de Jong FA, Marsh S, Mathijssen RH, King C, Verweij J, Sparreboom A et al (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10(17):5889–5894. doi:10.1158/1078-0432.CCR-04-0144 10/17/5889 [pii]

    Article  PubMed  Google Scholar 

  • de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13(21):6440–6449

    Article  PubMed  CAS  Google Scholar 

  • Dehghan A, Köttgen A, Yang Q, Hwang S, Kao W, Rivadeneira F et al (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372(9654):1953–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diop NK, Hrycyna CA (2005) N-Linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. Biochemistry 44(14):5420–5429. doi:10.1021/bi0479858

    Article  CAS  PubMed  Google Scholar 

  • Do TM, Noel-Hudson MS, Ribes S, Besengez C, Smirnova M, Cisternino S et al (2012) ABCG2- and ABCG4-mediated efflux of amyloid-β peptide 1-40 at the mouse blood-brain barrier. J Alzheimers Dis 30(1):155–166. doi:10.3233/JAD-2012-112189

    CAS  PubMed  Google Scholar 

  • Doyle L, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22(47):7340–7358. doi:10.1038/sj.onc.1206938 1206938 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95(26):15665–15670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durmus S, Xu N, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2013) P-glycoprotein (MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) restrict brain accumulation of the JAK1/2 inhibitor, CYT387. Pharmacol Res 76:9–16. doi:10.1016/j.phrs.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  • Durmus S, Hendrikx JJ, Schinkel AH (2015a) Apical ABC transporters and cancer chemotherapeutic drug disposition. Adv Cancer Res 125:1–41 doi:S0065-230X(14)00002-5 [pii]. 10.1016/bs.acr.2014.10.001

    Article  PubMed  Google Scholar 

  • Durmus S, Sparidans RW, van Esch A, Wagenaar E, Beijnen JH, Schinkel AH (2015b) Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm Res 32(1):37–46. doi:10.1007/s11095-014-1442-z

    Article  CAS  PubMed  Google Scholar 

  • Faneyte IF, Kristel PM, Maliepaard M, Scheffer GL, Scheper RJ, Schellens JH et al (2002) Expression of the breast cancer resistance protein in breast cancer. Clin Cancer Res 8(4):1068–1074

    CAS  PubMed  Google Scholar 

  • Fetsch P, Abati A, Litman T, Morisaki K, Honjo Y, Mittal K et al (2006) Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett 235(1):84–92 doi:S0304-3835(05)00353-8 [pii]. 10.1016/j.canlet.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  • Fox E, Bates SE (2007) Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 7(4):447–459. doi:10.1586/14737140.7.4.447

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Wakabayashi K, Tamura A, Nakagawa H, Morishima Y, Osawa Y et al (2009) Major SNP (Q141 K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res 26(2):469–479. doi:10.1007/s11095-008-9752-7

    Article  CAS  PubMed  Google Scholar 

  • Gandhi L, Harding MW, Neubauer M, Langer CJ, Moore M, Ross HJ et al (2007) A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer 109(5):924–932. doi:10.1002/cncr.22492

    Article  CAS  PubMed  Google Scholar 

  • Georgieva JV, Hoekstra D, Zuhorn IS (2014) Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier. Pharmaceutics 6(4):557–583. doi:10.3390/pharmaceutics6040557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri N, Agarwal S, Shaik N, Pan G, Chen Y, Elmquist WF (2009) Substrate-dependent breast cancer resistance protein (Bcrp1/Abcg2)-mediated interactions: consideration of multiple binding sites in in vitro assay design. Drug Metab Dispos 37(3):560–570 doi:dmd.108.022046 [pii]. 10.1124/dmd.108.022046

    Article  CAS  PubMed  Google Scholar 

  • Golden PL, Pardridge WM (2000) Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 20(2):165–181

    Article  CAS  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev Cancer 2(1):48–58

    Article  CAS  Google Scholar 

  • Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC et al (2003) ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 278(48):48275–48282. doi:10.1074/jbc.M310223200 M310223200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gutmann H, Hruz P, Zimmermann C, Beglinger C, Drewe J (2005) Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem Pharmacol 70(5):695–699

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY et al (2007) Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 110(1):138–147. doi:10.1002/cncr.22760

    Article  PubMed  Google Scholar 

  • Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC (1995) The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 200(3):151–154

    Article  CAS  PubMed  Google Scholar 

  • Hazai E, Hazai I, Ragueneau-Majlessi I, Chung SP, Bikadi Z, Mao Q (2013) Predicting substrates of the human breast cancer resistance protein using a support vector machine method. BMC Bioinformatics 14:130 doi:1471-2105-14-130 [pii]. 10.1186/1471-2105-14-130

    Article  PubMed  PubMed Central  Google Scholar 

  • Henriksen U, Fog JU, Litman T, Gether U (2005) Identification of intra- and intermolecular disulfide bridges in the multidrug resistance transporter ABCG2. J Biol Chem 280(44):36926–36934 doi:M502937200 [pii]. 10.1074/jbc.M502937200

    Article  CAS  PubMed  Google Scholar 

  • Hicks P, Rolsten C, Brizzee D, Samorajski T (1983) Age-related changes in rat brain capillaries. Neurobiol Aging 4(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell A, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35(8):1333–1340 doi:dmd.107.014902 [pii]. 10.1124/dmd.107.014902

    Article  CAS  PubMed  Google Scholar 

  • Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW, van de Laar A et al (2001) Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61(18):6635–6639

    CAS  PubMed  Google Scholar 

  • Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T (2013) Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 102(9):3343–3355. doi:10.1002/jps.23575

    Article  CAS  PubMed  Google Scholar 

  • Hosomi A, Nakanishi T, Fujita T, Tamai I (2012) Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE 7(2):e30456. doi:10.1371/journal.pone.0030456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hue-Roye K, Lomas-Francis C, Coghlan G, Zelinski T, Reid ME (2013a) The JR blood group system (ISBT 032): molecular characterization of three new null alleles. Transfusion 53(7):1575–1579. doi:10.1111/j.1537-2995.2012.03930.x

    Article  PubMed  Google Scholar 

  • Hue-Roye K, Zelinski T, Cobaugh A, Lomas-Francis C, Miyazaki T, Tani Y et al (2013b) The JR blood group system: identification of alleles that alter expression. Transfusion. 53(11):2710–2714. doi:10.1111/trf.12118

    Article  CAS  PubMed  Google Scholar 

  • Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S et al (2008) The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 73(2):220–225

    Article  CAS  PubMed  Google Scholar 

  • Hynd MR, Lewohl JM, Scott HL, Dodd PR (2003) Biochemical and molecular studies using human autopsy brain tissue. J Neurochem 85(3):543–562

    Article  CAS  PubMed  Google Scholar 

  • Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K et al (2002) Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 47(6):285–310. doi:10.1007/s100380200041

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T et al (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141 K protein and low-level drug resistance. Mol Cancer Ther 1(8):611–616

    CAS  PubMed  Google Scholar 

  • Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y et al (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100(9):3939–3950. doi:10.1002/jps.22487

    Article  CAS  PubMed  Google Scholar 

  • Jada SR, Lim R, Wong CI, Shu X, Lee SC, Zhou Q et al (2007) Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C > A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci 98(9):1461–1467 doi:CAS541 [pii]. 10.1111/j.1349-7006.2007.00541.x

    Article  CAS  PubMed  Google Scholar 

  • Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ et al (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99(24):15649–15654. doi:10.1073/pnas.202607599 202607599 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar E et al (2005) The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med 11(2):127–129

    Article  CAS  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  • Kage K, Tsukahara S, Sugiyama T, Asada S, Ishikawa E, Tsuruo T et al (2002) Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 97(5):626–630. doi:10.1002/ijc.10100 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kalvass JC, Pollack GM (2007) Kinetic considerations for the quantitative assessment of efflux activity and inhibition: implications for understanding and predicting the effects of efflux inhibition. Pharm Res 24(2):265–276. doi:10.1007/s11095-006-9135-x

    Article  CAS  PubMed  Google Scholar 

  • Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM, Liu X et al (2013) Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther 94(1):80–94 doi:clpt201334 [pii]. 10.1038/clpt.2013.34

    Article  CAS  PubMed  Google Scholar 

  • Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K et al (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25(6):1469–1483. doi:10.1007/s11095-008-9532-4

    Article  CAS  PubMed  Google Scholar 

  • Kannan P, John C, Zoghbi S, Halldin C, Gottesman M, Innis R et al (2009) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86(4):368–377 doi:clpt2009138 [pii]. 10.1038/clpt.2009.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M (2009a) Different effects of the ABCG2 c.421C > A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10(10):1617–1624. doi:10.2217/pgs.09.85

    Article  CAS  PubMed  Google Scholar 

  • Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M (2009b) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86(2):197–203 doi:clpt200979 [pii]. 10.1038/clpt.2009.79

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Kim HG, Kim DC, Eom HS, Kong SY, Shin HJ et al (2008) ABCG2 Q141 K polymorphism is associated with chemotherapy-induced diarrhea in patients with diffuse large B-cell lymphoma who received frontline rituximab plus cyclophosphamide/doxorubicin/vincristine/prednisone chemotherapy. Cancer Sci 99(12):2496–2501 doi:CAS985 [pii]. 10.1111/j.1349-7006.2008.00985.x

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Park HS, Kwon WS, Lee JH, Tanigawara Y, Lim SM et al (2013) Pharmacogenetic determinants associated with sunitinib-induced toxicity and ethnic difference in Korean metastatic renal cell carcinoma patients. Cancer Chemother Pharmacol 72(4):825–835. doi:10.1007/s00280-013-2258-y

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J et al (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 33(1):94–101 doi:dmd.104.001628 [pii]. 10.1124/dmd.104.001628

    Article  CAS  PubMed  Google Scholar 

  • Kondo C, Suzuki H, Itoda M, Ozawa S, Sawada J, Kobayashi D et al (2004) Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 21(10):1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Kort A, Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2015) Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm Res. doi:10.1007/s11095-014-1609-7

    PubMed  Google Scholar 

  • Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE et al (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279(23):24218–24225. doi:10.1074/jbc.M313599200 M313599200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kubo Y, Ohtsuki S, Uchida Y, Terasaki T (2015) Quantitative Determination of Luminal and Abluminal Membrane Distributions of Transporters in Porcine Brain Capillaries by Plasma Membrane Fractionation and Quantitative Targeted Proteomics. J Pharm Sci. doi:10.1002/jps.24398

    Google Scholar 

  • Lagas J, van Waterschoot R, Sparidans R, Wagenaar E, Beijnen J, Schinkel A (2010) Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther 9(2):319–326 doi:1535-7163.MCT-09-0663 [pii]. 10.1158/1535-7163.MCT-09-0663

    Article  CAS  PubMed  Google Scholar 

  • Lecerf-Schmidt F, Peres B, Valdameri G, Gauthier C, Winter E, Payen L et al (2013) ABCG2: recent discovery of potent and highly selective inhibitors. Future Med Chem 5(9):1037–1045. doi:10.4155/fmc.13.71

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Hu M, Lui S, Ho CS, Wong CK, Tomlinson B (2013) Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 14(11):1283–1294. doi:10.2217/pgs.13.115

    Article  CAS  PubMed  Google Scholar 

  • Lemos C, Giovannetti E, Zucali PA, Assaraf YG, Scheffer GL, van der Straaten T et al (2011) Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of gefitinib in non-small-cell lung cancer patients. Pharmacogenomics 12(2):159–170. doi:10.2217/pgs.10.172

    Article  CAS  PubMed  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23(6):682–684

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Marchetti S, Pluim D, Iusuf D, Mazzanti R, Schellens JH et al (2013) Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Clin Cancer Res 19(8):2084–2095. doi:10.1158/1078-0432.CCR-12-3105

    Article  CAS  PubMed  Google Scholar 

  • Lin F, de Gooijer MC, Roig EM, Buil LC, Christner SM, Beumer JH et al (2014) ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin Cancer Res 20(10):2703–2713. doi:10.1158/1078-0432.CCR-14-0084

    Article  CAS  PubMed  Google Scholar 

  • Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD et al (2000) The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci 113(Pt 11):2011–2021

    CAS  PubMed  Google Scholar 

  • Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678. doi:10.1158/1078-0432.CCR-10-1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loscher W, Potschka H (2005) Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2(1):86–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6(8):591–602. doi:10.1038/nrn1728

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH et al (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61(8):3458–3464

    CAS  PubMed  Google Scholar 

  • Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport–an update. AAPS J 17(1):65–82. doi:10.1208/s12248-014-9668-6

    Article  CAS  PubMed  Google Scholar 

  • Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 2009;1(5):5ra11. doi:1/5/5ra11 [pii]. 10.1126/scitranslmed.3000237

  • McDevitt CA, Collins RF, Conway M, Modok S, Storm J, Kerr ID et al (2006) Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 14(11):1623–1632 doi:S0969-2126(06)00387-X [pii]. 10.1016/j.str.2006.08.014

    Article  CAS  PubMed  Google Scholar 

  • Minderman H, O’Loughlin KL, Pendyala L, Baer MR (2004) VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 10(5):1826–1834

    Article  CAS  PubMed  Google Scholar 

  • Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF (2012) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther 342(1):33–40. doi:10.1124/jpet.112.192195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa M, Tsukahara S, Ishikawa E, Asada S, Imai Y, Sugimoto Y (2003) Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants. Int J Cancer 107(5):757–763. doi:10.1002/ijc.11484

    Article  CAS  PubMed  Google Scholar 

  • Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109(2):238–246. doi:10.1002/ijc.11669

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O et al (2012) Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet 27(6):631–639 doi:DN/JST.JSTAGE/dmpk/DMPK-12-RG-026 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Morikawa A, Peereboom DM, Thorsheim HR, Samala R, Balyan R, Murphy CG et al (2015) Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol 17(2):289–295. doi:10.1093/neuonc/nou141

    Article  CAS  PubMed  Google Scholar 

  • Morisaki K, Robey RW, Ozvegy-Laczka C, Honjo Y, Polgar O, Steadman K et al (2005) Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol 56(2):161–172. doi:10.1007/s00280-004-0931-x

    Article  CAS  PubMed  Google Scholar 

  • Muller PJ, Dally H, Klappenecker CN, Edler L, Jager B, Gerst M et al (2009) Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients. Int J Cancer 124(7):1669–1674. doi:10.1002/ijc.23956

    Article  PubMed  CAS  Google Scholar 

  • Muoio V, Persson PB, Sendeski MM (2014) The neurovascular unit- concept review. Acta Physiol (Oxf) 210(4):790–798. doi:10.1111/apha.12250

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Tamura A, Wakabayashi K, Hoshijima K, Komada M, Yoshida T et al (2008) Ubiquitin-mediated proteasomal degradation of non-synonymous SNP variants of human ABC transporter ABCG2. Biochem J 411(3):623–631 doi:BJ20071229 [pii]. 10.1042/BJ20071229

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Wakabayashi-Nakao K, Tamura A, Toyoda Y, Koshiba S, Ishikawa T (2009) Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS J 276(24):7237–7252 doi:EJB7423 [pii]. 10.1111/j.1742-4658.2009.07423.x

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Doyle LA, Hassel B, Wei Y, Bauer KS, Wu S et al (2003) Functional characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol Pharmacol 64(6):1452–1462. doi:10.1124/mol.64.6.1452 64/6/1452 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ni Z, Bikadi Z, Shuster DL, Zhao C, Rosenberg MF, Mao Q (2011) Identification of proline residues in or near the transmembrane helices of the human breast cancer resistance protein (BCRP/ABCG2) that are important for transport activity and substrate specificity. Biochemistry 50(37):8057–8066. doi:10.1021/bi200573t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi K, Katayama K, Sugimoto Y (2014) Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers Med 7:53–64. doi:10.2147/PGPM.S38295 pgpm-7-053 [pii]

    PubMed  PubMed Central  Google Scholar 

  • Oberoi RK, Mittapalli RK, Elmquist WF (2013) Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 347(3):755–764. doi:10.1124/jpet.113.208959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara K, Osabe T, Suzuki Y, Tsuneyama H, Isa K, Kawai M et al (2014) A new ABCG2 null allele with a 27-kb deletion including the promoter region causing the Jr(a-) phenotype. Transfusion. doi:10.1111/trf.12969

    Google Scholar 

  • Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F et al (2013) Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm 10(1):289–296. doi:10.1021/mp3004308

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki S, Hirayama M, Ito S, Uchida Y, Tachikawa M, Terasaki T (2014) Quantitative targeted proteomics for understanding the blood-brain barrier: towards pharmacoproteomics. Expert Rev Proteomics 11(3):303–313. doi:10.1586/14789450.2014.893830

    Article  CAS  PubMed  Google Scholar 

  • Ozols RF, Cunnion RE, Klecker RW, Hamilton TC, Ostchega Y, Parrillo JE et al (1987) Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 5:641–647

    Article  CAS  PubMed  Google Scholar 

  • Ozvegy-Laczka C, Koblos G, Sarkadi B, Varadi A (2005) Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. Biochim Biophys Acta 1668(1):53–63 doi:S0005-2736(04)00291-3 [pii]. 10.1016/j.bbamem.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  • Palmieri D, Duchnowska R, Woditschka S, Hua E, Qian Y, Biernat W et al (2014) Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin Cancer Res 20(10):2727–2739. doi:10.1158/1078-0432.CCR-13-2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972. doi:10.1038/jcbfm.2012.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polgar O, Robey RW, Morisaki K, Dean M, Michejda C, Sauna ZE et al (2004) Mutational analysis of ABCG2: role of the GXXXG motif. Biochemistry 43(29):9448–9456. doi:10.1021/bi0497953

    Article  CAS  PubMed  Google Scholar 

  • Polgar O, Robey RW, Bates SE (2008) ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 4(1):1–15. doi:10.1517/17425255.4.1.1

    Article  CAS  PubMed  Google Scholar 

  • Polgar O, Ierano C, Tamaki A, Stanley B, Ward Y, Xia D et al (2010) Mutational analysis of threonine 402 adjacent to the GXXXG dimerization motif in transmembrane segment 1 of ABCG2. Biochemistry 49(10):2235–2245. doi:10.1021/bi902085q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poller B, Iusuf D, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2011) Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab Dispos 39(5):729–735. doi:10.1124/dmd.110.037317

    Article  CAS  PubMed  Google Scholar 

  • Polli J, Olson K, Chism J, John-Williams L, Yeager R, Woodard S et al (2009) An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 37(2):439–442

    Article  CAS  PubMed  Google Scholar 

  • Rabindran SK, He H, Singh M, Brown E, Collins KI, Annable T et al (1998) Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res 58(24):5850–5858

    CAS  PubMed  Google Scholar 

  • Rago RP, Einstein A, Lush R, Beer TM, Ko YJ, Henner WD et al (2003) Safety and efficacy of the MDR inhibitor Incel (biricodar, VX-710) in combination with mitoxantrone and prednisone in hormone-refractory prostate cancer. Cancer Chemother Pharmacol 51(4):297–305. doi:10.1007/s00280-003-0573-4

    CAS  PubMed  Google Scholar 

  • Rajapakse VN, Luna A, Ohashi H, Onishi N, Sasa K, Sousa FG, Varma S, Kohn KW, Reinhold WC, Pommier Y (2015) tcgaMiner (web application in development), NCI-Developmental Therapeutics Branch, Genomics and Bioinformatics Group

    Google Scholar 

  • Robey RW, Honjo Y, Morisaki K, Nadjem TA, Runge S, Risbood M et al (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89(10):1971–1978. doi:10.1038/sj.bjc.6601370 6601370 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robey RW, Steadman K, Polgar O, Morisaki K, Blayney M, Mistry P et al (2004) Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res 64(4):1242–1246

    Article  CAS  PubMed  Google Scholar 

  • Robey RW, Steadman K, Polgar O, Bates SE (2005) ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther 4(2):187–194 doi:1440 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H et al. (1999) A typical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91(5):429–433

    Google Scholar 

  • Saison C, Helias V, Ballif BA, Peyrard T, Puy H, Miyazaki T et al (2012) Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 44(2):174–177 doi:ng.1070 [pii]. 10.1038/ng.1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salphati L, Lee LB, Pang J, Plise EG, Zhang X (2010) Role of P-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. Drug Metab Dispos 38(9):1422–1426. doi:10.1124/dmd.110.034256

    Article  CAS  PubMed  Google Scholar 

  • Sane R, Agarwal S, Mittapalli RK, Elmquist WF (2013) Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier leads to nonlinear distribution of elacridar to the central nervous system. J Pharmacol Exp Ther 345(1):111–124. doi:10.1124/jpet.112.199786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K et al (2014) The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front Neurosci 8:404. doi:10.3389/fnins.2014.00404

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99(2):507–512

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36(2–3):179–194

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L et al (1994) Disruption of mouse mdr-1a p-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  • Schneider E, Horton JK, Yang CH, Nakagawa M, Cowan KH (1994) Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res 54:152–158

    CAS  PubMed  Google Scholar 

  • Seiden MV, Swenerton KD, Matulonis U, Campos S, Rose P, Batist G et al (2002) A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol Oncol 86(3):302–310

    Article  CAS  PubMed  Google Scholar 

  • Shaffer B, Gillet J, Patel C, Baer M, Bates S, Gottesman M (2012) Drug resistance: Still a daunting challenge to the successful treatment of AML. Drug Resist Updat.

    Google Scholar 

  • Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S et al (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8(4):1332–1341. doi:10.1021/mp200129p

    Article  CAS  PubMed  Google Scholar 

  • Sparreboom A, Gelderblom H, Marsh S, Ahluwalia R, Obach R, Principe P et al (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C > A genotype. Clin Pharmacol Ther 76(1):38–44. doi:10.1016/j.clpt.2004.03.003 S0009923604000931 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278(25):22644–22649

    Article  CAS  PubMed  Google Scholar 

  • Tai LM, Loughlin AJ, Male DK, Romero IA (2009) P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. J Cereb Blood Flow Metab 29(6):1079–1083. doi:10.1038/jcbfm.2009.42

    Article  CAS  PubMed  Google Scholar 

  • Taipalensuu J, Tornblom H, Lindberg G, Einarsson C, Sjoqvist F, Melhus H et al (2001) Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 299(1):164–170

    CAS  PubMed  Google Scholar 

  • Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, Tagawa H et al (2010) Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 55(11):731–737 doi:jhg201098 [pii]. 10.1038/jhg.2010.98

    Article  CAS  PubMed  Google Scholar 

  • Tamura A, Watanabe M, Saito H, Nakagawa H, Kamachi T, Okura I et al (2006) Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 70(1):287–296 doi:mol.106.023556 [pii]. 10.1124/mol.106.023556

    CAS  PubMed  Google Scholar 

  • Tanaka M, Kamada I, Takahashi J, Kimura K, Matsukura H, Tani Y (2014) Defining the Jr(a-) phenotype in the Japanese population. Transfusion 54(2):412–417. doi:10.1111/trf.12277

    CAS  PubMed  Google Scholar 

  • Tian C, Ambrosone CB, Darcy KM, Krivak TC, Armstrong DK, Bookman MA et al (2012) Common variants in ABCB1, ABCC2 and ABCG2 genes and clinical outcomes among women with advanced stage ovarian cancer treated with platinum and taxane-based chemotherapy: a Gynecologic Oncology Group study. Gynecol Oncol 124(3):575–581 doi:S0090-8258(11)00940-1 [pii]. 10.1016/j.ygyno.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  • Tiribelli M, Fabbro D, Franzoni A, Fanin R, Damante G, Damiani D (2013) Q141 K polymorphism of ABCG2 protein is associated with poor prognosis in adult acute myeloid leukemia treated with idarubicin-based chemotherapy. Haematologica 98(3):e28–e29 doi:haematol.2012.075895 [pii]. 10.3324/haematol.2012.075895

    Article  PubMed  PubMed Central  Google Scholar 

  • Toppmeyer D, Seidman AD, Pollak M, Russell C, Tkaczuk K, Verma S et al (2002) Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin Cancer Res 8(3):670–678

    CAS  PubMed  Google Scholar 

  • Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41(5):1967–1972

    CAS  PubMed  Google Scholar 

  • Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW (2012) Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol 83(2):279–285. doi:10.1016/j.bcp.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J et al (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117(2):333–345. doi:10.1111/j.1471-4159.2011.07208.x

    Article  CAS  PubMed  Google Scholar 

  • Urquhart BL, Ware JA, Tirona RG, Ho RH, Leake BF, Schwarz UI et al (2008) Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics 18(5):439–448. doi:10.1097/FPC.0b013e3282f974dc 01213011-200805000-00008 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidhyanathan S, Mittapalli RK, Sarkaria JN, Elmquist WF (2014) Factors influencing the CNS distribution of a novel MEK-1/2 inhibitor: implications for combination therapy for melanoma brain metastases. Drug Metab Dispos 42(8):1292–1300. doi:10.1124/dmd.114.058339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH (1999) Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer 79(1):108–113

    Article  PubMed  PubMed Central  Google Scholar 

  • van Herwaarden AE, Wagenaar E, Karnekamp B, Merino G, Jonker JW, Schinkel AH (2006) Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis 27(1):123–130

    Article  PubMed  CAS  Google Scholar 

  • van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH et al (2007) Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol 27(4):1247–1253

    Article  PubMed  CAS  Google Scholar 

  • van Loevezijn A, Allen JD, Schinkel AH, Koomen GJ (2001) Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorg Med Chem Lett 11(1):29–32 doi:S0960-894X(00)00588-6 [pii]

    Article  PubMed  Google Scholar 

  • Vethanayagam RR, Wang H, Gupta A, Zhang Y, Lewis F, Unadkat JD et al (2005) Functional analysis of the human variants of breast cancer resistance protein: I206L, N590Y, and D620N. Drug Metab Dispos 33(6):697–705 doi:dmd.105.003657 [pii]. 10.1124/dmd.105.003657

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Nakagawa H, Tamura A, Koshiba S, Hoshijima K, Komada M et al (2007) Intramolecular disulfide bond is a critical check point determining degradative fates of ATP-binding cassette (ABC) transporter ABCG2 protein. J Biol Chem 282(38):27841–27846 doi:C700133200 [pii]. 10.1074/jbc.C700133200

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi-Nakao K, Tamura A, Furukawa T, Nakagawa H, Ishikawa T (2009) Quality control of human ABCG2 protein in the endoplasmic reticulum: ubiquitination and proteasomal degradation. Adv Drug Deliv Rev 61(1):66–72 doi:S0169-409X(08)00258-5 [pii]. 10.1016/j.addr.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi-Nakao K, Tamura A, Koshiba S, Toyoda Y, Nakagawa H, Ishikawa T (2010) Production of cells with targeted integration of gene variants of human ABC transporter for stable and regulated expression using the Flp recombinase system. Methods Mol Biol 648:139–159. doi:10.1007/978-1-60761-756-3_9

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Agarwal S, Elmquist WF (2012) Brain distribution of cediranib is limited by active efflux at the blood-brain barrier. J Pharmacol Exp Ther 341(2):386–395. doi:10.1124/jpet.111.190488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 106(25):10338–10342 doi:0901249106 [pii]. 10.1073/pnas.0901249106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS et al (2013) Gout-causing Q141 K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci USA 110(13):5223–5228 doi:1214530110 [pii]. 10.1073/pnas.1214530110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H et al (2008) The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem 283(6):3349–3356 doi:M707773200 [pii]. 10.1074/jbc.M707773200

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C et al (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci 29(17):5463–5475 doi:29/17/5463 [pii]. 10.1523/JNEUROSCI.5103-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Liu Y, Yang Y, Bates S, Zhang JT (2004) Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. J Biol Chem 279(19):19781–19789. doi:10.1074/jbc.M310785200 M310785200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Peng H, Chen Q, Liu Y, Dong Z, Zhang JT (2007) Oligomerization domain of the multidrug resistance-associated transporter ABCG2 and its dominant inhibitory activity. Cancer Res 67(9):4373–4381 doi:67/9/4373 [pii]. 10.1158/0008-5472.CAN-06-3169

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M, Tabuchi H et al (2008) Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther 84(1):95–103 doi:6100459 [pii]. 10.1038/sj.clpt.6100459

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Ikegami Y, Hayasaka S, Ishii K, Ito A, Sano K et al (2004) Novel camptothecin analogues that circumvent ABCG2-associated drug resistance in human tumor cells. Int J Cancer 110(6):921–927. doi:10.1002/ijc.20216

    Article  CAS  PubMed  Google Scholar 

  • Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD et al (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics. 13(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Zamboni WC, Ramanathan RK, McLeod HL, Mani S, Potter DM, Strychor S et al (2006) Disposition of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite in relation to ABC transporter genotypes. Invest New Drugs 24(5):393–401. doi:10.1007/s10637-006-6335-5

    Article  CAS  PubMed  Google Scholar 

  • Zelinski T, Coghlan G, Liu XQ, Reid ME (2012) ABCG2 null alleles define the Jr(a-) blood group phenotype. Nat Genet 44(2):131–132 doi:ng.1075 [pii]. 10.1038/ng.1075

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yu BN, He YJ, Fan L, Li Q, Liu ZQ et al (2006) Role of BCRP 421C > A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 373(1–2):99–103 doi:S0009-8981(06)00266-X [pii]. 10.1016/j.cca.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS et al (2009) Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood-brain barrier. Drug Metab Dispos 37(6):1251–1258 doi:dmd.108.025064 [pii]. 10.1124/dmd.108.025064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Schmidt K, Nelson FR, Zelesky V, Troutman MD, Feng B (2009) The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos 37(5):946–955 doi:dmd.108.024489 [pii]. 10.1124/dmd.108.024489

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Ruan ZR, Yuan H, Xu DH, Zeng S (2013) ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie 68(2):129–134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Intramural Research Program of the National Institutes of Health (Center for Cancer Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basseville, A. et al. (2016). The ABCG2 Multidrug Transporter. In: George, A. (eds) ABC Transporters - 40 Years on. Springer, Cham. https://doi.org/10.1007/978-3-319-23476-2_9

Download citation

Publish with us

Policies and ethics