Skip to main content

Bacterial ABC Multidrug Exporters: From Shared Proteins Motifs and Features to Diversity in Molecular Mechanisms

  • Chapter
  • First Online:
ABC Transporters - 40 Years on

Abstract

Bacterial ATP-binding cassette (ABC) exporters embrace an enormous range of biological processes. They can mediate the efflux of a wide variety of substrates ranging from small inorganic ions, drugs, and antibiotics to large protein toxins and other macromolecules. They can also act as mediators and regulators in transmembrane signaling processes perhaps without mediating any direct transport reaction. This diversity in function of ABC exporters raises questions about their structure, how conformational changes are coupled to activity, and how we can use this information to inhibit, activate, or bypass physiological functions in drug-based strategies. When the first ABC transporters were discovered, now 40 years ago, it was noted by sequence comparisons that many of them shared a similar domain organization. But exactly how these domains cooperate in mediating transport activity was unknown. A wealth of biochemical studies and crystal structures of nucleotide-binding domains (NBDs), and subsequently of full-length ABC exporters, suggests that the general mechanism is based on metabolic energy-dependent alternating access of substrate-binding pocket(s) to either side of the phospholipid bilayer, but that there is diversity in the detailed molecular mechanisms that are being employed. This chapter provides an overview of the structural and mechanistic intricacies that have surfaced over the past years, and the challenges in further studies on these amazing transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Iwata S, Kaback HR (2003) The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett 555(1):96–101

    Article  CAS  PubMed  Google Scholar 

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922):1718–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ames GF, Noel KD, Taber H, Spudich EN, Nikaido K, Afong J (1977) Fine-structure map of the histidine transport genes in Salmonella typhimurium. J Bacteriol 129(3):1289–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bavoil P, Hofnung M, Nikaido H (1980) Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli. J Biol Chem 255(18):8366–8369

    CAS  PubMed  Google Scholar 

  • Boncoeur E, Durmort C, Bernay B, Ebel C, Di Guilmi AM, Croize J, Vernet T, Jault JM (2012) PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry 51(39):7755–7765. doi:10.1021/bi300762p

    Article  CAS  Google Scholar 

  • Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592. doi:10.1146/annurev.biochem.71.102301.093055

    Article  CAS  PubMed  Google Scholar 

  • Buchler M, Konig J, Brom M, Kartenbeck J, Spring H, Horie T, Keppler D (1996) cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem 271(25):15091–15098

    Article  CAS  PubMed  Google Scholar 

  • Burke MA, Mutharasan RK, Ardehali H (2008) The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ Res 102(2):164–176. doi:10.1161/CIRCRESAHA.107.165324

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47(3):381–389

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lu G, Lin J, Davidson AL, Quiocho FA (2003) A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12(3):651–661. doi:10.1016/j.molcel.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  • Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW, Beis K (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci USA 111(25):9145–9150. doi:10.1073/pnas.1320506111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258(5088):1650–1654

    Article  CAS  PubMed  Google Scholar 

  • Crowley E, O’Mara ML, Kerr ID, Callaghan R (2010) Transmembrane helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1. FEBS J 277(19):3974–3985. doi:10.1111/j.1742-4658.2010.07789.x

    Article  CAS  PubMed  Google Scholar 

  • Davidson AL (2002) Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. J Bacteriol 184(5):1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson RJ, Hollenstein K, Locher KP (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65(2):250–257. doi:10.1111/j.1365-2958.2007.05792.x

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443(7108):180–185. doi:10.1038/nature05155

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581(5):935–938. doi:10.1016/j.febslet.2007.01.073

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw E, Graham B, Phillips GJ, ten Hagen-Jongman CM, Oudega B, Luirink J (1999) Molecular characterization of Escherichia coli FtsE and FtsX. Mol Microbiol 31(3):983–993

    Article  PubMed  Google Scholar 

  • Dean M, Allikmets R (1995) Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev 5(6):779–785

    Article  CAS  PubMed  Google Scholar 

  • Doshi R, Ali A, Shi W, Freeman EV, Fagg LA, van Veen HW (2013) Molecular disruption of the power stroke in the ATP-binding cassette transport protein MsbA. J Biol Chem 288(10):6801–6813. doi:10.1074/jbc.M112.430074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doshi R, van Veen HW (2013) Substrate binding stabilizes a pre-translocation intermediate in the ATP-binding cassette transport protein MsbA. J Biol Chem 288(30):21638–21647. doi:10.1074/jbc.M113.485714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doshi R, Woebking B, van Veen HW (2010) Dissection of the conformational cycle of the multidrug/lipidA ABC exporter MsbA. Proteins 78(14):2867–2872. doi:10.1002/prot.22813

    Article  CAS  PubMed  Google Scholar 

  • Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps–first come, first served? FEBS J 277(3):540–549. doi:10.1111/j.1742-4658.2009.07485.x

    Article  CAS  PubMed  Google Scholar 

  • Felmlee T, Pellett S, Welch RA (1985) Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163(1):94–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galian C, Manon F, Dezi M, Torres C, Ebel C, Levy D, Jault JM (2011) Optimized purification of a heterodimeric ABC transporter in a highly stable form amenable to 2-D crystallization. PLoS ONE 6(5):e19677. doi:10.1371/journal.pone.0019677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvey MI, Baylay AJ, Wong RL, Piddock LJ (2011) Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 55(1):190–196. doi:10.1128/AAC.00672-10

    Article  CAS  PubMed  Google Scholar 

  • Garvey MI, Piddock LJ (2008) The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother 52(5):1677–1685. doi:10.1128/AAC.01644-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilson E, Higgins CF, Hofnung M, Ferro-Luzzi Ames G, Nikaido H (1982) Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli. J Biol Chem 257(17):9915–9918

    CAS  PubMed  Google Scholar 

  • Gilson L, Mahanty HK, Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9(12):3875–3884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58. doi:10.1038/nrc706

    Article  CAS  PubMed  Google Scholar 

  • Gouaux E (2009) The molecular logic of sodium-coupled neurotransmitter transporters. Philos Trans R Soc Lond B Biol Sci 364(1514):149–154. doi:10.1098/rstb.2008.0181

    Article  CAS  PubMed  Google Scholar 

  • Guilfoile PG, Hutchinson CR (1991) A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci USA 88(19):8553–8557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutmann DA, Ward A, Urbatsch IL, Chang G, van Veen HW (2010) Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem Sci 35(1):36–42. doi:10.1016/j.tibs.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  • Hanekop N, Zaitseva J, Jenewein S, Holland IB, Schmitt L (2006) Molecular insights into the mechanism of ATP-hydrolysis by the NBD of the ABC-transporter HlyB. FEBS Lett 580(4):1036–1041. doi:10.1016/j.febslet.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8(1):67–113

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Haag PD, Nikaido K, Ardeshir F, Garcia G, Ames GF (1982) Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium. Nature 298(5876):723–727

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Hiles ID, Salmond GP, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW et al (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323(6087):448–450. doi:10.1038/323448a0

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11(10):918–926. doi:10.1038/nsmb836

    Article  CAS  PubMed  Google Scholar 

  • Hiles ID, Higgins CF (1986) Peptide uptake by Salmonella typhimurium. The periplasmic oligopeptide-binding protein. Eur J Biochem 158(3):561–567

    Article  CAS  PubMed  Google Scholar 

  • Hinchliffe P, Symmons MF, Hughes C, Koronakis V (2013) Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol 67:221–242. doi:10.1146/annurev-micro-092412-155718

    Article  CAS  PubMed  Google Scholar 

  • Hipfner DR, Deeley RG, Cole SP (1999) Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta 1461(2):359–376

    Article  CAS  PubMed  Google Scholar 

  • Hohl M, Briand C, Grutter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19(4):395–402. doi:10.1038/nsmb.2267

    Article  CAS  PubMed  Google Scholar 

  • Hohl M, Hurlimann LM, Bohm S, Schoppe J, Grutter MG, Bordignon E, Seeger MA (2014) Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. Proc Natl Acad Sci USA 111(30):11025–11030. doi:10.1073/pnas.1400485111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland IB, Possot O, Blight M, Yue K (1991) Bacterial haemolysin and mammalian P-glycoprotein. Biochem Soc Trans 19(2):252–255

    Article  CAS  PubMed  Google Scholar 

  • Hou YX, Cui L, Riordan JR, Chang XB (2002) ATP binding to the first nucleotide-binding domain of multidrug resistance protein MRP1 increases binding and hydrolysis of ATP and trapping of ADP at the second domain. J Biol Chem 277(7):5110–5119. doi:10.1074/jbc.M107133200

    Article  CAS  PubMed  Google Scholar 

  • Hrycyna CA, Ramachandra M, Ambudkar SV, Ko YH, Pedersen PL, Pastan I, Gottesman MM (1998) Mechanism of action of human P-glycoprotein ATPase activity. Photochemical cleavage during a catalytic transition state using orthovanadate reveals cross-talk between the two ATP sites. J Biol Chem 273(27):16631–16634

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL (1994) Evolution of the ATP-binding-cassette transmembrane transporters of vertebrates. Mol Biol Evol 11(6):899–910

    CAS  PubMed  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211(5052):969–970

    Article  CAS  PubMed  Google Scholar 

  • Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490(7421):566–569. doi:10.1038/nature11448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PM, George AM (2013) Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 48(1):39–50. doi:10.3109/10409238.2012.735644

    Article  CAS  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    Article  CAS  PubMed  Google Scholar 

  • Karow M, Georgopoulos C (1993) The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol Microbiol 7(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Kerr ID (2002) Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim Biophys Acta 1561(1):47–64

    Article  CAS  PubMed  Google Scholar 

  • Kodan A, Yamaguchi T, Nakatsu T, Sakiyama K, Hipolito CJ, Fujioka A, Hirokane R, Ikeguchi K, Watanabe B, Hiratake J, Kimura Y, Suga H, Ueda K, Kato H (2014) Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proc Natl Acad Sci USA 111(11):4049–4054. doi:10.1073/pnas.1321562111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkhov VM, Mireku SA, Locher KP (2012) Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490(7420):367–372. doi:10.1038/nature11442

    Article  CAS  PubMed  Google Scholar 

  • Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305. doi:10.1146/annurev.micro.61.080706.093329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Yang JG, Zhitnitsky D, Lewinson O, Rees DC (2014) Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343(6175):1133–1136. doi:10.1126/science.1246489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linton KJ, Higgins CF (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28(1):5–13

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1996) The minimum functional unit of human P-glycoprotein appears to be a monomer. J Biol Chem 271(44):27488–27492

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (2000a) Drug-stimulated ATPase activity of human P-glycoprotein is blocked by disulfide cross-linking between the nucleotide-binding sites. J Biol Chem 275(26):19435–19438. doi:10.1074/jbc.C000222200

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (2000b) Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J Biol Chem 275(50):39272–39278. doi:10.1074/jbc.M007741200

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (2008) Mutational analysis of ABC proteins. Arch Biochem Biophys 476(1):51–64. doi:10.1016/j.abb.2008.02.025

    Article  CAS  PubMed  Google Scholar 

  • Lugo MR, Sharom FJ (2005) Interaction of LDS-751 and rhodamine 123 with P-glycoprotein: evidence for simultaneous binding of both drugs. Biochemistry 44(42):14020–14029. doi:10.1021/bi0511179

    Article  CAS  Google Scholar 

  • Margolles A, Putman M, van Veen HW, Konings WN (1999) The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 38(49):16298–16306

    Article  CAS  Google Scholar 

  • Marrer E, Satoh AT, Johnson MM, Piddock LJ, Page MG (2006a) Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 50(1):269–278. doi:10.1128/AAC.50.1.269-278.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrer E, Schad K, Satoh AT, Page MG, Johnson MM, Piddock LJ (2006b) Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 50(2):685–693. doi:10.1128/AAC.50.2.685-693.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Berridge G, Higgins CF, Mistry P, Charlton P, Callaghan R (2000a) Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol 58(3):624–632

    CAS  PubMed  Google Scholar 

  • Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R (2000b) Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 39(39):11901–11906

    Article  CAS  Google Scholar 

  • McDevitt CA, Crowley E, Hobbs G, Starr KJ, Kerr ID, Callaghan R (2008) Is ATP binding responsible for initiating drug translocation by the multidrug transporter ABCG2? FEBS J 275(17):4354–4362

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Verhalen B, Stein RA, Wen PC, Tajkhorshid E, McHaourab HS (2014) Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. Elife 3:e02740. doi:10.7554/eLife.02740

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1957) A general theory of membrane transport from studies of bacteria. Nature 180(4577):134–136

    Article  CAS  PubMed  Google Scholar 

  • Moussatova A, Kandt C, O’Mara ML, Tieleman DP (2008) ATP-binding cassette transporters in Escherichia coli. Biochim Biophys Acta 1778(9):1757–1771. doi:10.1016/j.bbamem.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443(7108):173–179. doi:10.1038/nature05076

    Article  CAS  PubMed  Google Scholar 

  • Omote H, Al-Shawi MK (2006) Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism. Biophys J 90(11):4046–4059. doi:10.1529/biophysj.105.077743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perria CL, Rajamanickam V, Lapinski PE, Raghavan M (2006) Catalytic site modifications of TAP1 and TAP2 and their functional consequences. J Biol Chem 281(52):39839–39851. doi:10.1074/jbc.M605492200

    Article  CAS  PubMed  Google Scholar 

  • Procko E, Ferrin-O’Connell I, Ng SL, Gaudet R (2006) Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. Mol Cell 24(1):51–62. doi:10.1016/j.molcel.2006.07.034

    Article  CAS  PubMed  Google Scholar 

  • Qu Q, Sharom FJ (2001) FRET analysis indicates that the two ATPase active sites of the P-glycoprotein multidrug transporter are closely associated. Biochemistry 40(5):1413–1422

    Article  CAS  Google Scholar 

  • Quentin Y, Fichant G, Denizot F (1999) Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J Mol Biol 287(3):467–484. doi:10.1006/jmbi.1999.2624

    Article  CAS  PubMed  Google Scholar 

  • Ravaud S, Do Cao MA, Jidenko M, Ebel C, Le Maire M, Jault JM, Di Pietro A, Haser R, Aghajari N (2006) The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state. Biochem J 395(2):345–353. doi:10.1042/BJ20051719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter G, Janvilisri T, Venter H, Shahi S, Balakrishnan L, van Veen HW (2003) The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J Biol Chem 278(37):35193–35198. doi:10.1074/jbc.M306226200

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V (1985) Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316(6031):817–819

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Robertson GT, Doyle TB, Lynch AS (2005) Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother 49(11):4781–4783. doi:10.1128/AAC.49.11.4781-4783.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG (2001) Structural mechanisms of QacR induction and multidrug recognition. Science 294(5549):2158–2163. doi:10.1126/science.1066020

    Article  CAS  PubMed  Google Scholar 

  • Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313(5791):1295–1298. doi:10.1126/science.1131542

    Article  CAS  PubMed  Google Scholar 

  • Seeger MA, van Veen HW (2009) Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta Proteins Proteomics 1794(5):725–737

    Article  CAS  Google Scholar 

  • Seyffer F, Tampe R (2014) ABC transporters in adaptive immunity. Biochim Biophys Acta. 1850(3):449–460. doi: 10.1016/j.bbagen.2014.05.022

    PubMed  Google Scholar 

  • Shapiro AB, Ling V (1997) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250(1):130–137

    Article  CAS  PubMed  Google Scholar 

  • Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C, Marsden BD, von Delft F, Bullock AN, Gileadi O, Burgess-Brown NA, Carpenter EP (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci USA 110(24):9710–9715. doi:10.1073/pnas.1217042110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10(1):139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spies T, Bresnahan M, Bahram S, Arnold D, Blanck G, Mellins E, Pious D, DeMars R (1990) A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348(6303):744–747. doi:10.1038/348744a0

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan V, Pierik AJ, Lill R (2014) Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343(6175):1137–1140. doi:10.1126/science.1246729

    Article  CAS  PubMed  Google Scholar 

  • Stockner T, de Vries SJ, Bonvin AM, Ecker GF, Chiba P (2009) Data-driven homology modelling of P-glycoprotein in the ATP-bound state indicates flexibility of the transmembrane domains. FEBS J 276(4):964–972. doi:10.1111/j.1742-4658.2008.06832.x

    Article  CAS  PubMed  Google Scholar 

  • Taylor JC, Horvath AR, Higgins CF, Begley GS (2001) The multidrug resistance P-glycoprotein. Oligomeric state and intramolecular interactions. J Biol Chem 276(39):36075–36078. doi:10.1074/jbc.C100345200

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 84(9):3004–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbatsch IL, Gimi K, Wilke-Mounts S, Lerner-Marmarosh N, Rousseau ME, Gros P, Senior AE (2001) Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. J Biol Chem 276(29):26980–26987. doi:10.1074/jbc.M010829200

    Article  CAS  PubMed  Google Scholar 

  • van Veen HW, Callaghan R, Soceneantu L, Sardini A, Konings WN, Higgins CF (1998) A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature 391(6664):291–295. doi:10.1038/34669

    Article  PubMed  Google Scholar 

  • van Veen HW, Konings WN (1997) Multidrug transporters from bacteria to man: similarities in structure and function. Semin Cancer Biol 8(3):183–191. doi:10.1006/scbi.1997.0064

    Article  PubMed  Google Scholar 

  • van Veen HW, Margolles A, Muller M, Higgins CF, Konings WN (2000) The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J 19(11):2503–2514. doi:10.1093/emboj/19.11.2503

    Article  PubMed  PubMed Central  Google Scholar 

  • van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci USA 93(20):10668–10672

    Article  PubMed  PubMed Central  Google Scholar 

  • van Wonderen JH, McMahon RM, O’Mara ML, McDevitt CA, Thomson AJ, Kerr ID, MacMillan F, Callaghan R (2014) The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis. FEBS J 281(9):2190–2201. doi:10.1111/febs.12773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velamakanni S, Lau CH, Gutmann DA, Venter H, Barrera NP, Seeger MA, Woebking B, Matak-Vinkovic D, Balakrishnan L, Yao Y, Edmond CU, Shilling RA, Robinson CV, Thorn P, van Veen HW (2009) A multidrug ABC transporter with a taste for salt. PLoS One 4 (7):e6137. doi:10.1371/journal.pone.0006137

    Google Scholar 

  • Venter H, Shilling RA, Velamakanni S, Balakrishnan L, Van Veen HW (2003) An ABC transporter with a secondary-active multidrug translocator domain. Nature 426(6968):866–870. doi:10.1038/nature02173

    Article  CAS  PubMed  Google Scholar 

  • Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433(7028):876–880. doi:10.1038/nature03313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel M, Hess J, Then I, Juarez A, Goebel W (1988) Characterization of a sequence (hlyR) which enhances synthesis and secretion of hemolysin in Escherichia coli. Mol Gen Genet 212(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Vos JC, Reits EA, Wojcik-Jacobs E, Neefjes J (2000) Head-head/tail-tail relative orientation of the pore-forming domains of the heterodimeric ABC transporter TAP. Curr Biol 10(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Mulligan S, Carragher B, Chang G, Milligan RA (2009) Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. J Struct Biol 165(3):169–175

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104(48):19005–19010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S, Venter H, Balakrishnan L, van Veen HW (2005) Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J Bacteriol 187(18):6363–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woebking B, Velamakanni S, Federici L, Seeger MA, Murakami S, van Veen HW (2008) Functional role of transmembrane helix 6 in drug binding and transport by the ABC transporter MsbA. Biochemistry 47(41):10904–10914

    Article  CAS  Google Scholar 

  • Yuan YR, Blecker S, Martsinkevich O, Millen L, Thomas PJ, Hunt JF (2001) The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem 276(34):32313–32321. doi:10.1074/jbc.M100758200

    Article  CAS  PubMed  Google Scholar 

  • Zaidi AH, Bakkes PJ, Lubelski J, Agustiandari H, Kuipers OP, Driessen AJ (2008) The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol 190(22):7357–7366. doi:10.1128/JB.00485-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, Holland IB, Schmitt L (2006) A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J 25(14):3432–3443. doi:10.1038/sj.emboj.7601208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zgurskaya HI (2009) Multicomponent drug efflux complexes: architecture and mechanism of assembly. Future Microbiol 4(7):919–932. doi:10.2217/fmb.09.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheleznova EE, Markham PN, Neyfakh AA, Brennan RG (1999) Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Zolnerciks JK, Wooding C, Linton KJ (2007) Evidence for a Sav 1866-like architecture for the human multidrug transporter P-glycoprotein. FASEB J 21(14):3937–3948

    Article  CAS  PubMed  Google Scholar 

  • Zou P, Bortolus M, McHaourab HS (2009) Conformational cycle of the ABC transporter MsbA in liposomes: detailed analysis using double electron-electron resonance spectroscopy. J Mol Biol 393(3):586–597. doi:10.1016/j.jmb.2009.08.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou P, McHaourab HS (2009) Alternating access of the putative substrate-binding chamber in the ABC transporter MsbA. J Mol Biol 393(3):574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is funded by the Biotechnology and Biological Sciences Research Council, Medical Research Council, and Human Frontier Science Program. He is also grateful for support from the British Society for Antimicrobial Chemotherapy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik W. van Veen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Veen, H.W. (2016). Bacterial ABC Multidrug Exporters: From Shared Proteins Motifs and Features to Diversity in Molecular Mechanisms. In: George, A. (eds) ABC Transporters - 40 Years on. Springer, Cham. https://doi.org/10.1007/978-3-319-23476-2_2

Download citation

Publish with us

Policies and ethics