Skip to main content

ABCC7/CFTR

  • Chapter
  • First Online:
ABC Transporters - 40 Years on

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR), also known as ABCC7, is an unusual member of the ATP-binding cassette family in that it is an ion channel rather than a transporter. Here, ATP binding is thought to initiate channel opening, with hydrolysis of the nucleotide being associated with channel closure. Loss of CFTR function through mutation leads to the life-threatening and -shortening condition known as cystic fibrosis. Recently, the importance of external factors affecting CFTR function has also been reported. In this chapter I have focussed on the basic structural biology and biochemistry of the protein but have also attempted to link this knowledge with the understanding of the disease. I have employed a bottom-up approach, starting with what can be learned from the primary structure of the protein, leading on to an examination of the secondary and tertiary structure of CFTR. The mapping of common CF-causing missense mutations within the CFTR 3D structure will also be addressed here. Lastly, the chapter finishes with some discussion of the prospects for future research on CFTR and how data for the channel function of CFTR can inform the ATP-binding cassette field of study in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

C:

Carboxy-terminal

CF:

Cystic fibrosis

CFF:

Cystic fibrosis foundation

CFTR:

Cystic fibrosis transmembrane conductance regulator

DDM:

Dodecyl maltoside

EM:

Electron microscopy

ECL:

Extracellular loop

GPCR:

G-protein coupled receptor

ICL:

Intracytoplasmic loop

N:

Amino-terminal

NBD:

Nucleotide-binding domain

PDB:

Protein data bank

PM:

Plasma membrane

RI:

Regulatory insertion

R:

Regulatory (region or domain)

SCA:

Statistical coupling analysis

TMD:

Transmembrane domain

References

  • Aleksandrov L, Aleksandrov AA, Chang XB, Riordan JR (2002) The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover. J Biol Chem 277:15419–15425

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrov AA, Aleksandrov LA, Riordan JR (2007) CFTR (ABCC7) is a hydrolyzable-ligand-gated channel. Pflugers Arch 453:693–702

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrov AA, Cui L, Riordan JR (2009) Relationship between nucleotide binding and ion channel gating in cystic fibrosis transmembrane conductance regulator. J Physiol 587:2875–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleksandrov AA, Kota P, Cui L, Jensen T, Alekseev AE, Reyes S, He L, Gentzsch M, Aleksandrov LA, Dokholyan NV, Riordan JR (2012) Allosteric modulation balances thermodynamic stability and restores function of ΔF508 CFTR. J Mol Biol 419:41–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aller S, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell P, Trinh Y, Zhang Q, Urbatsch I, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 1718–1722

    Google Scholar 

  • Awayn NH, Rosenberg MF, Kamis AB, Aleksandrov LA, Riordan JR, Ford RC (2005) Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Biochem Soc Trans 33:996–999

    Article  CAS  PubMed  Google Scholar 

  • Baker JM, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozoky Z, Krzeminski M, Chong PA, Forman-Kay JD (2013a) Structural changes of CFTR R region upon phosphorylation: a plastic platform for intramolecular and intermolecular interactions. FEBS J 280:4407–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-Zahrani A, Thomas PJ, Frizzell RA, Ford RC, Forman-Kay JD (2013b) Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. In: Proceedings of the National Academy of Sciences of the United States of America

    Google Scholar 

  • Cant N, Pollock N, Ford RC (2014) CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 52:15–25

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Mengos A, Hou Y, Cui L, Jensen T, Aleksandrov A, Riordan J, Gentzsch M (2008) Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator. J Cell Sci 121:2814–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappe V, Hinkson DA, Zhu T, Chang XB, Riordan JR, Hanrahan JW (2003) Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J Physiol 548:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JH, Chang XB, Aleksandrov AA, Riordan JR (2002) CFTR is a monomer: biochemical and functional evidence. J Membr Biol 188:55–71

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Chong PA, Kota P, Dokholyan NV, Forman-Kay JD (2013) Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 3:a009522

    PubMed  PubMed Central  Google Scholar 

  • Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, Worthington EN, Gentzsch M, Kreda SM, Cholon D, Bennett WD, Riordan JR, Boucher RC, Tarran R (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J (official publication of the Federation of American Societies for Experimental Biology) 26:533–545

    Article  CAS  Google Scholar 

  • Csanady L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, McLachlin DT, Krutchinsky AN, Chait BT, Nairn AC, Gadsby DC (2005) Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. J Gen Physiol 125:171–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Aleksandrov L, Hou YX, Gentzsch M, Chen JH, Riordan JR, Aleksandrov AA (2006) The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. J Physiol 572:347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Aleksandrov L, Chang XB, Hou YX, He L, Hegedus T, Gentzsch M, Aleksandrov A, Balch WE, Riordan JR (2007) Domain interdependence in the biosynthetic assembly of CFTR. J Mol Biol 365:981–994

    Article  CAS  PubMed  Google Scholar 

  • Cutting GR (2005) Modifier genetics: cystic fibrosis. Annu Rev Genomics Hum Genet 6:237–260

    Article  CAS  PubMed  Google Scholar 

  • Dahan D, Evagelidis A, Hanrahan JW, Hinkson DA, Jia Y, Luo J, Zhu T (2001) Regulation of the CFTR channel by phosphorylation. Pflugers Arch 443(Suppl 1):S92–S96

    Article  CAS  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    Article  CAS  PubMed  Google Scholar 

  • de Cid R, Ramos MD, Aparisi L, Garcia C, Mora J, Estivill X, Farre A, Casals T (2010) Independent contribution of common CFTR variants to chronic pancreatitis. Pancreas 39:209–215

    Article  PubMed  Google Scholar 

  • Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33:475–479

    Article  CAS  PubMed  Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    Article  CAS  PubMed  Google Scholar 

  • Eckford PD, Li C, Ramjeesingh M, Bear CE (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 287:36639–36649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskandari S, Wright EM, Kreman M, Starace DM, Zampighi GA (1998) Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc Natl Acad Sci USA 95:11235–11240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford RC, Holzenburg A (2008) Electron crystallography of biomolecules: mysterious membranes and missing cones. Trends Biochem Sci 33:38–43

    Article  CAS  PubMed  Google Scholar 

  • French PJ, Bijman J, Edixhoven M, Vaandrager AB, Scholte BJ, Lohmann SM, Nairn AC, de Jonge HR (1995) Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II. J Biol Chem 270:26626–26631

    Article  CAS  PubMed  Google Scholar 

  • Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory RJ, Cheng SH, Rich DP, Marshall J, Paul S, Hehir K, Ostedgaard L, Klinger KW, Welsh MJ, Smith AE (1990) Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347:382–386

    Article  CAS  PubMed  Google Scholar 

  • Haggie PM, Verkman AS (2008) Monomeric CFTR in plasma membranes in live cells revealed by single molecule fluorescence imaging. J Biol Chem 283:23510–23513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins C (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt E, Zhang Q, Cant N, Ding H, Dai Q, Peng L, Fu Y, DeLucas LJ, Ford R, Kappes JC, Urbatsch IL (2014) A survey of detergents for the purification of stable, active human cystic fibrosis transmembrane conductance regulator (CFTR). Biochim Biophys Acta 1838:2825–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoelen H, Kleizen B, Schmidt A, Richardson J, Charitou P, Thomas PJ, Braakman I (2010) The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain. PLoS ONE 5:e15458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Cui L, Riordan JR, Chang X (2000) Allosteric interactions between the two non-equivalent nucleotide binding domains of multidrug resistance protein MRP1. J Biol Chem 275:20280–20287

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Liu Q, Scarborough GA (1998) Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator. Anal Biochem 259:89–97

    Article  CAS  PubMed  Google Scholar 

  • Hudson RP, Chong PA, Protasevich II, Vernon R, Noy E, Bihler H, An JL, Kalid O, Sela-Culang I, Mense M, Senderowitz H, Brouillette CG, Forman-Kay JD (2012) Conformational changes relevant to channel activity and folding within the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 287:28480–28494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt JF, Wang C, Ford RC (2013) Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 3:a009514

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang TC, Sheppard DN (2009) Gating of the CFTR Cl-channel by ATP-driven nucleotide-binding domain dimerisation. J Physiol 587:2151–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang TC, Wang F, Yang IC, Reenstra WW (1997) Genistein potentiates wild-type and delta F508-CFTR channel activity. Am J Physiol 273:C988–C998

    CAS  PubMed  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  CAS  PubMed  Google Scholar 

  • Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699

    Article  CAS  PubMed  Google Scholar 

  • Kanelis V, Hudson RP, Thibodeau PH, Thomas PJ, Forman-Kay JD (2010) NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR. EMBO J 29:263–277

    Article  CAS  PubMed  Google Scholar 

  • Klein I, Sarkadi B, Varadi A (1999) An inventory of the human ABC proteins. Biochim Biophys Acta 1461:237–262

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR (1999) Biosynthesis and degradation of CFTR. Physiol Rev 79:S167–S173

    CAS  PubMed  Google Scholar 

  • Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  CAS  PubMed  Google Scholar 

  • Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S (2005) Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem 280:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF (2010) Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J Mol Biol 396:406–430

    Article  CAS  PubMed  Google Scholar 

  • Linsdell P (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280:8945–8950

    Article  CAS  PubMed  Google Scholar 

  • Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286:295–299

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2010) The V510D suppressor mutation stabilizes DeltaF508-CFTR at the cell surface. Biochemistry 49:6352–6357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matar-Merheb R, Rhimi M, Leydier A, Huche F, Galian C, Desuzinges-Mandon E, Ficheux D, Flot D, Aghajari N, Kahn R, Di Pietro A, Jault JM, Coleman AW, Falson P (2011) Structuring detergents for extracting and stabilizing functional membrane proteins. PLoS ONE 6:e18036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, Feranchak AP, Brautigam CA, Thomas PJ (2012) Requirements for efficient correction of DeltaF508 CFTR revealed by analyses of evolved sequences. Cell 148:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC (2006) In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J 25:4728–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC, Ashcroft FM (2005) 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J 24:4166–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mio K, Ogura T, Mio M, Shimizu H, Hwang TC, Sato C, Sohma Y (2008) Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J Biol Chem 283:30300–30310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mornon JP, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65:2594–2612

    Article  CAS  PubMed  Google Scholar 

  • Mornon JP, Lehn P, Callebaut I (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci CMLS 66:3469–3486

    Article  CAS  PubMed  Google Scholar 

  • Mornon JP, Hoffmann B, Jonic S, Lehn P, Callebaut I (2014) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci CMLS

    Google Scholar 

  • Oldham ML, Chen S, Chen J (2013) Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci USA 110:18132–18137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostedgaard LS, Baldursson O, Vermeer DW, Welsh MJ, Robertson AD (2000) A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc Natl Acad Sci USA 97:5657–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters KW, Okiyoneda T, Balch WE, Braakman I, Brodsky JL, Guggino WB, Penland CM, Pollard HB, Sorscher EJ, Skach WR, Thomas PJ, Lukacs GL, Frizzell RA (2011) CFTR folding consortium: methods available for studies of CFTR folding and correction. Methods Mol Biol 742:335–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock N, Cant N, Rimington T, Ford RC (2014) Purification of the cystic fibrosis transmembrane conductance regulator protein expressed in Saccharomyces cerevisiae. J Vis Exp JoVE

    Google Scholar 

  • Prickett M, Jain M (2013) Gene therapy in cystic fibrosis. Transl Res 161:255–264

    Article  CAS  PubMed  Google Scholar 

  • Protasevich I, Yang Z, Wang C, Atwell S, Zhao X, Emtage S, Wetmore D, Hunt JF, Brouillette CG (2010) Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1. Protein Sci 19:1917–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, Du K, di Bernardo S, Liu Y, Konermann L, Roldan A, Lukacs GL (2012) Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell 148:150–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman KS, Cui G, Harvey SC, McCarty NA (2013) Modeling the conformational changes underlying channel opening in CFTR. PLoS ONE 8:e74574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramjeesingh M, Li CH, Kogan I, Wang YC, Huan LJ, Bear CE (2001) A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator. Biochemistry 40:10700–10706

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726

    Article  CAS  PubMed  Google Scholar 

  • Riordan J, Rommens J, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR, Forbush B, Hanrahan JW (1994) The molecular basis of chloride transport in shark rectal gland. J Exp Biol 196:405–418

    CAS  PubMed  Google Scholar 

  • Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC, Riordan JR (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 279:39051–39057

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MF, Oleschuk CJ, Wu P, Mao Q, Deeley RG, Cole SP, Ford RC (2010) Structure of a human multidrug transporter in an inward-facing conformation. J Struct Biol 170:540–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg MF, O’Ryan LP, Hughes G, Zhao Z, Aleksandrov LA, Riordan JR, Ford RC (2011) The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate. J Biol Chem 286:42647–42654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson HM, Robert R, Liao J, Matthes E, Carlile GW, Hanrahan JW, Thomas DY (2011) Identification of a NBD1-binding pharmacological chaperone that corrects the trafficking defect of F508del-CFTR. Chem Biol 18:231–242

    Article  CAS  PubMed  Google Scholar 

  • Schillers H, Shahin V, Albermann L, Schafer C, Oberleithner H (2004) Imaging CFTR: a tail to tail dimer with a central pore. Cell Physiol Biochem 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Seibert FS, Chang XB, Aleksandrov AA, Clarke DM, Hanrahan JW, Riordan JR (1999) Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum. Biochim Biophys Acta 1461:275–283

    Article  CAS  PubMed  Google Scholar 

  • Serohijos AW, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci USA 105:3256–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C, Marsden BD, von Delft F, Bullock AN, Gileadi O, Burgess-Brown NA, Carpenter EP (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci USA 110:9710–9715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SS, Liu X, Zhang ZR, Sun F, Kriewall TE, McCarty NA, Dawson DC (2001) CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 118:407–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosnay PR, Castellani C, Corey M, Dorfman R, Zielenski J, Karchin R, Penland CM, Cutting GR (2011) Evaluation of the disease liability of CFTR variants. Methods Mol Biol 742:355–372

    Article  CAS  PubMed  Google Scholar 

  • Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, Ramalho AS, Amaral MD, Dorfman R, Zielenski J, Masica DL, Karchin R, Millen L, Thomas PJ, Patrinos GP, Corey M, Lewis MH, Rommens JM, Castellani C, Penland CM, Cutting GR (2013) Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet 45:1160–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thibodeau PH, Brautigam CA, Machius M, Thomas PJ (2005) Side chain and backbone contributions of Phe508 to CFTR folding. Nat Struct Mol Biol 12:10–16

    Article  CAS  PubMed  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106:18825–18830

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108:18843–18848

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433:876–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Linsdell P (2012) Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J Biol Chem

    Google Scholar 

  • Wang C, Protasevich I, Yang Z, Seehausen D, Skalak T, Zhao X, Atwell S, Spencer Emtage J, Wetmore DR, Brouillette CG, Hunt JF (2010) Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis. Protein Sci 19:1932–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci USA 104:19005–19010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Kartner N, Lukacs GL (1998) Limited proteolysis as a probe for arrested conformational maturation of delta F508 CFTR. Nat Struct Biol 5:180–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Aleksandrov LA, Zhao ZF, Birtley JR, Riordan JR, Ford RC (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167:242–251

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Aleksandrov LA, Riordan JR, Ford RC (2010) Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling. Biochim Biophys Acta

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Ford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ford, R.C. (2016). ABCC7/CFTR. In: George, A. (eds) ABC Transporters - 40 Years on. Springer, Cham. https://doi.org/10.1007/978-3-319-23476-2_13

Download citation

Publish with us

Policies and ethics