Skip to main content

Prostate Imaging

  • Chapter
Interventional Urology

Abstract

In 2013, the American Cancer Society estimated that prostate cancer (PCa) would account for 28 % of all new cancers, more than twice that of any other malignancy [1]. It is the second leading cause of cancer-related mortality in Western men with approximately 30,000 deaths per year and is thus a major public health problem [1]. PCa, however, represents a broad spectrum of diseases ranging from indolent tumors with no risk of lethality to highly aggressive cancers that rapidly metastasize, leading to death. Similarly, treatment outcomes have been shown to vary greatly depending upon tumor staging. For example, treatment of cancer confined to the prostate is usually curative with a greater than 90 % 5-year survival while treatment of advanced metastatic disease is far less effective with survival measured in months and accompanied by a poor quality of life. This has placed a significant emphasis on developing improved screening and staging methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Schröder FH, et al. Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European randomized study of screening for prostate cancer. J Natl Cancer Inst. 1998;90:1817–23.

    Article  PubMed  Google Scholar 

  3. Yacoub JH, Oto A, Miller FH. MR imaging of the prostate. Radiol Clin North Am. 2014;52:811–37.

    Article  PubMed  Google Scholar 

  4. Schröder FH, et al. Early detection of prostate cancer in 2007. Part 1: PSA and PSA kinetics. Eur Urol. 2008;53:468–77.

    Article  PubMed  Google Scholar 

  5. Thompson IM, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004;350:2239–46.

    Article  CAS  PubMed  Google Scholar 

  6. Moyer VA, Preventive Services US. Task force. Screening for prostate cancer: U.S. Preventive services task force recommendation statement. Ann Intern Med. 2012;157:120–34.

    Article  PubMed  Google Scholar 

  7. Miller AB. New data on prostate-cancer mortality after PSA screening. N Engl J Med. 2012;366:1047–8.

    Article  CAS  PubMed  Google Scholar 

  8. Levine MA, Ittman M, Melamed J, Lepor H. Two consecutive sets of transrectal ultrasound guided sextant biopsies of the prostate for the detection of prostate cancer. J Urol. 1998;159:471–5; discussion 475–476.

    Article  CAS  PubMed  Google Scholar 

  9. Noguchi M, Stamey TA, McNeal JE, Yemoto CM. Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol. 2001;166:104–9; discussion 109–110.

    Article  CAS  PubMed  Google Scholar 

  10. Sosna J, et al. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol. 2004;11:857–62.

    Article  PubMed  Google Scholar 

  11. Beyersdorff D, et al. MRI of prostate cancer at 1.5 and 3.0 T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol. 2005;185:1214–20.

    Article  PubMed  Google Scholar 

  12. Park BK, Kim B, Kim CK, Lee HM, Kwon GY. Comparison of phased-array 3.0-T and endorectal 1.5-T magnetic resonance imaging in the evaluation of local staging accuracy for prostate cancer. J Comput Assist Tomogr. 2007;31:534–8.

    Article  PubMed  Google Scholar 

  13. Heijmink SWTPJ, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T – comparison of image quality, localization, and staging performance. Radiology. 2007;244:184–95.

    Article  PubMed  Google Scholar 

  14. Engelbrecht MR, et al. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol. 2002;12:2294–302.

    Article  PubMed  Google Scholar 

  15. Turkbey B, et al. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging. 2014;39:1443–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. White S, et al. Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology. 1995;195:385–90.

    Article  CAS  PubMed  Google Scholar 

  17. Barrett T, Vargas HA, Akin O, Goldman DA, Hricak H. Value of the hemorrhage exclusion sign on T1-weighted prostate MR images for the detection of prostate cancer. Radiology. 2012;263:751–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Qayyum A, et al. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol. 2004;183:1079–83.

    Article  PubMed  Google Scholar 

  19. Barentsz JO, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22:746–57.

    Article  PubMed Central  PubMed  Google Scholar 

  20. McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol. 1988;12:897–906.

    Article  CAS  PubMed  Google Scholar 

  21. Tindall DJ. Recent advances in prostate cancer: basic science discoveries and clinical advances. Singapore: World Scientific; 2011.

    Book  Google Scholar 

  22. Kirkham APS, Emberton M, Allen C. How good is MRI at detecting and characterising cancer within the prostate? Eur Urol. 2006;50:1163–74; discussion 1175.

    Article  PubMed  Google Scholar 

  23. Wang L, et al. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology. 2008;246:168–76.

    Article  PubMed  Google Scholar 

  24. Langer DL, et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2 – sparse versus dense cancers. Radiology. 2008;249:900–8.

    Article  PubMed  Google Scholar 

  25. Oto A, et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. 2010;257:715–23.

    Article  PubMed  Google Scholar 

  26. Akin O, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239:784–92.

    Article  PubMed  Google Scholar 

  27. Li H, et al. Conventional MRI capabilities in the diagnosis of prostate cancer in the transition zone. AJR Am J Roentgenol. 2006;186:729–42.

    Article  PubMed  Google Scholar 

  28. Lemaitre L, et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol. 2009;19:470–80.

    Article  PubMed  Google Scholar 

  29. Bloch BN, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging – initial results. Radiology. 2007;245:176–85.

    Article  PubMed  Google Scholar 

  30. Weinreb JC, et al. Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy – results of ACRIN prospective multi-institutional clinicopathologic study. Radiology. 2009;251:122–33.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Turkbey B, et al. Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology. 2013;268:144–52.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Stephenson SK, Chang EK, Marks LS. Screening and detection advances in magnetic resonance image-guided prostate biopsy. Urol Clin North Am. 2014;41:315–26.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Jacobs MA, Ouwerkerk R, Petrowski K, Macura KJ. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging. 2008;19:261–72.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Metens T, Miranda D, Absil J, Matos C. What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol. 2012;22:703–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenkrantz AB, et al. T2-weighted prostate MRI at 7 tesla using a simplified external transmit-receive coil array: Correlation with radical prostatectomy findings in two prostate cancer patients. J Magn Reson Imaging. 2013. doi:10.1002/jmri.24511.

    Google Scholar 

  36. Kitajima K, et al. Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm2) and standard high b-value (1000 s/mm2). J Magn Reson Imaging. 2012;36:198–205.

    Article  PubMed  Google Scholar 

  37. Katahira K, et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol. 2011;21:188–96.

    Article  PubMed  Google Scholar 

  38. Ueno Y, et al. Ultra-high b-value diffusion-weighted MRI for the detection of prostate cancer with 3-T MRI. J Magn Reson Imaging. 2013;38:154–60.

    Article  PubMed  Google Scholar 

  39. Hosseinzadeh K, Schwarz SD. Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging. 2004;20:654–61.

    Article  PubMed  Google Scholar 

  40. Kim JH, Kim JK, Park B-W, Kim N, Cho K-S. Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region. J Magn Reson Imaging. 2008;28:1173–9.

    Article  PubMed  Google Scholar 

  41. Tan CH, Wei W, Johnson V, Kundra V. Diffusion-weighted MRI in the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol. 2012;199:822–9.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hoeks CMA, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261:46–66.

    Article  PubMed  Google Scholar 

  43. Bonekamp D, Macura KJ. Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate. Top Magn Reson Imaging. 2008;19:273–84.

    Article  PubMed  Google Scholar 

  44. Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J. Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging. 2008;26:1071–80.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Alonzi R, Padhani AR, Allen C. Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol. 2007;63:335–50.

    Article  PubMed  Google Scholar 

  46. Casciani E, et al. Contribution of the MR spectroscopic imaging in the diagnosis of prostate cancer in the peripheral zone. Abdom Imaging. 2007;32:796–802.

    Article  PubMed  Google Scholar 

  47. Joseph T, et al. Pretreatment endorectal magnetic resonance imaging and magnetic resonance spectroscopic imaging features of prostate cancer as predictors of response to external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:665–71.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Djavan B, et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol. 2001;166:1679–83.

    Article  CAS  PubMed  Google Scholar 

  49. Eberhardt SC, et al. ACR appropriateness criteria prostate cancer – pretreatment detection, staging, and surveillance. J Am Coll Radiol. 2013;10:83–92.

    Article  PubMed  Google Scholar 

  50. Heidenreich A, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.

    Article  PubMed  Google Scholar 

  51. De Rooij M, Hamoen EHJ, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol. 2014;202:343–51.

    Article  PubMed  Google Scholar 

  52. Delongchamps NB, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2011;107:1411–8.

    Article  PubMed  Google Scholar 

  53. Jung SI, et al. Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology. 2013;269:493–503.

    Article  PubMed  Google Scholar 

  54. Haider MA, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007;189:323–8.

    Article  PubMed  Google Scholar 

  55. Hoeks CMA, et al. Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology. 2013;266:207–17.

    Article  PubMed  Google Scholar 

  56. Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS. Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol. 2012;187:2032–8.

    Article  PubMed  Google Scholar 

  57. Vargas HA, Wassberg C, Akin O, Hricak H. MR imaging of treated prostate cancer. Radiology. 2012;262:26–42.

    Article  PubMed  Google Scholar 

  58. Doo KW, et al. Detectability of low and intermediate or high risk prostate cancer with combined T2-weighted and diffusion-weighted MRI. Eur Radiol. 2012;22:1812–9.

    Article  PubMed  Google Scholar 

  59. Bratan F, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol. 2013;23:2019–29.

    Article  PubMed  Google Scholar 

  60. Bostwick DG. Staging prostate cancer – 1997: current methods and limitations. Eur Urol. 1997;32 Suppl 3:2–14.

    PubMed  Google Scholar 

  61. Couñago F, et al. Role of 3.0 T multiparametric MRI in local staging in prostate cancer and clinical implications for radiation oncology. Clin Transl Oncol. 2014. doi:10.1007/s12094-014-1186-6.

    PubMed  Google Scholar 

  62. Kim CK, Park SY, Park JJ, Park BK. Diffusion-weighted MRI as a predictor of extracapsular extension in prostate cancer. AJR Am J Roentgenol. 2014;202:W270–6.

    Article  PubMed  Google Scholar 

  63. Bloch BN, et al. Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI. Eur Radiol. 2012;22:2201–10.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Pierorazio PM, et al. A contemporary analysis of outcomes of adenocarcinoma of the prostate with seminal vesicle invasion (pT3b) after radical prostatectomy. J Urol. 2011;185:1691–7.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Sapre N, et al. Re-evaluating the biological significance of seminal vesicle invasion (SVI) in locally advanced prostate cancer. BJU Int. 2012;110 Suppl 4:58–63.

    Article  PubMed  Google Scholar 

  66. Sala E, et al. Endorectal MR imaging in the evaluation of seminal vesicle invasion: diagnostic accuracy and multivariate feature analysis. Radiology. 2006;238:929–37.

    Article  PubMed  Google Scholar 

  67. Soylu FN, et al. Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology. 2013;267:797–806.

    Article  PubMed  Google Scholar 

  68. Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974;111:58–64.

    CAS  PubMed  Google Scholar 

  69. Epstein JI, ISUP Grading Committee, Allsbrook Jr WC, Amin MB, Egevad LL. The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29:1228–42.

    Article  PubMed  Google Scholar 

  70. Vargas HA, et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology. 2011;259:775–84.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Yoshimitsu K, et al. Usefulness of apparent diffusion coefficient map in diagnosing prostate carcinoma: correlation with stepwise histopathology. J Magn Reson Imaging. 2008;27:132–9.

    Article  PubMed  Google Scholar 

  72. Tamada T, et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging. 2008;28:720–6.

    Article  PubMed  Google Scholar 

  73. Verma S, et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol. 2011;196:374–81.

    Article  PubMed  Google Scholar 

  74. Hambrock T, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259:453–61.

    Article  PubMed  Google Scholar 

  75. Kobus T, et al. Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3 T. Radiology. 2012;265:457–67.

    Article  PubMed  Google Scholar 

  76. D’Amico A, et al. The use of clinical parameters in an interactive statistical package to predict pathological features associated with local failure after radical prostatectomy for prostate cancer. Clin Perform Qual Health Care. 1993;1:219–22.

    PubMed  Google Scholar 

  77. Turkbey B, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258:488–95.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Bastian PJ, et al. High-risk prostate cancer: from definition to contemporary management. Eur Urol. 2012;61:1096–106.

    Article  PubMed  Google Scholar 

  79. Chalian H, et al. Radiologic assessment of response to therapy: comparison of RECIST versions 1.1 and 1.0. Radiographics. 2011;31:2093–105.

    Article  PubMed  Google Scholar 

  80. Campbell SC, Klein EA, Levin HS, Piedmonte MR. Open pelvic lymph node dissection for prostate cancer: a reassessment. Urology. 1995;46:352–5.

    Article  CAS  PubMed  Google Scholar 

  81. Tiguert R, et al. Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology. 1999;53:367–71.

    Article  CAS  PubMed  Google Scholar 

  82. Outwater EK, Montilla-Soler JL. Imaging of prostate carcinoma. Cancer Control. 2013;20:161–76.

    PubMed  Google Scholar 

  83. Heesakkers RAM, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 2008;9:850–6.

    Article  CAS  PubMed  Google Scholar 

  84. Hövels AM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–95.

    Article  PubMed  Google Scholar 

  85. Harisinghani MG, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  86. Weissleder R, et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990;175:494–8.

    Article  CAS  PubMed  Google Scholar 

  87. Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn Reson Med. 2002;47:292–7.

    Article  PubMed  Google Scholar 

  88. Heesakkers RAM, et al. Prostate cancer evaluated with ferumoxtran-10–enhanced T2*-weighted MR imaging at 1.5 and 3.0 T: early experience. Radiology. 2006;239:481–7.

    Article  PubMed  Google Scholar 

  89. Heesakkers RAM, et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10–enhanced MR imaging. Radiology. 2009;251:408–14.

    Article  PubMed  Google Scholar 

  90. Bouchelouche K, et al. PET/CT imaging and radioimmunotherapy of prostate cancer. Semin Nucl Med. 2011;41:29–44.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Damle NA, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baris Turkbey MD or Peter Choyke MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elbuluk, O., Turkbey, B., Choyke, P. (2016). Prostate Imaging. In: Rastinehad, A., Siegel, D., Pinto, P., Wood, B. (eds) Interventional Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-23464-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23464-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23463-2

  • Online ISBN: 978-3-319-23464-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics