Skip to main content

Managing the Adaptive Proteostatic Landscape: Restoring Resilience in Alpha-1 Antitrypsin Deficiency

  • Chapter
Alpha-1 Antitrypsin

Part of the book series: Respiratory Medicine ((RM))

  • 723 Accesses

Abstract

A protein adopts numerous energetic folding states controlling its stability and functional trajectory during its lifespan. These states are differentially recognized and managed by a sophisticated network mainly composed of folding chaperones (the chaperome) and degradative (ubiquitin and autophagy–lysosome based) components referred to as proteostasis. The proteostasis network (PN) defines different quinary states (Q-states) for each protein in response to its secondary, tertiary, and quaternary levels of organization and hence constitutes an adaptive proteostatic landscape (APL). The APL concept emphasizes not only the dynamic and sculptable in vivo folding energy of each protein but also the dynamic function defined by the local PN. Inherited genetic disorders, such as the Z-variant in alpha-1 antitrypsin deficiency (AATD), expand the diversity of protein folding landscape excursions and often redirect the misfolded species in ways that challenge cellular, tissue, and host PN buffering and capacity. Individual-specific inherited genetic traits (Marciniak and Lomas, Clin Chest Med. 35(1):29–38, 2014), acquisition of modifiers, and environmental stressors that impair the normal PN response to misfolding excursions lead to further imbalances in the APL in both the liver and lung of AATD patients, triggering disease phenotypes. Here, we review how the PN responds to the proteostatic problem in AATD and discuss the rationale behind potential new therapeutic proteostatic strategies to manage the APL and restore the resilience and health in AATD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PN:

Proteostasis network

ER:

Endoplasmic reticulum

AAT:

Alpha-1 antitrypsin

Q-state:

Quinary state

APL:

Adaptive proteostatic landscape

AATD:

Alpha-1 antitrypsin deficiency

NE:

Neutrophil elastase

COPD:

Chronic obstructive pulmonary disease

RCL:

Reactive center loop

WT:

Wild-type

COPII:

Coatomer protein complex II

G/ERAD:

Glycan ER-associated degradation

ER-phagy:

ER-associated autophagy response

BAL:

Bronchoalveolar lavage

HSR:

Heat shock response

UPR:

Unfolded protein response

MSR:

Maladaptive stress response

ERAF:

ER-assisted folding and glycosylation

QC:

Quality control

NEF:

Nucleotide exchange factors

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor

References

  1. Wolynes PG, Onuchic JN, Thirumalai D. Navigating the folding routes. Science. 1995;267(5204):1619–20.

    Article  CAS  PubMed  Google Scholar 

  2. Kim YE, et al. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55.

    Article  CAS  PubMed  Google Scholar 

  3. Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2011;76:91–9.

    Article  CAS  PubMed  Google Scholar 

  4. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article  CAS  PubMed  Google Scholar 

  5. Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 1:S33–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Vilchez D, Simic MS, Dillin A. Proteostasis and aging of stem cells. Trends Cell Biol. 2014;24(3):161–70.

    Article  CAS  PubMed  Google Scholar 

  7. Ong DS, Kelly JW. Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases. Curr Opin Cell Biol. 2011;23(2):231–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 2009;324(5924):203–7.

    Article  CAS  PubMed  Google Scholar 

  9. Motlagh HN, et al. The ensemble nature of allostery. Nature. 2014;508(7496):331–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dunker AK, et al. Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform. 2000;11:161–71.

    CAS  PubMed  Google Scholar 

  11. Ferreon AC, et al. Modulation of allostery by protein intrinsic disorder. Nature. 2013;498(7454):390–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Toretsky JA, Wright PE. Assemblages: functional units formed by cellular phase separation. J Cell Biol. 2014;206(5):579–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci. 2013;22(6):693–724.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ellis RJ. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol. 2001;11(1):114–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wyatt AR, et al. Extracellular chaperones and proteostasis. Annu Rev Biochem. 2013;82:295–322.

    Article  CAS  PubMed  Google Scholar 

  16. Evans ML, Chapman MR. Curli biogenesis: order out of disorder. Biochim Biophys Acta. 2014;1843(8):1551–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Powers ET, Balch WE. Protein folding: protection from the outside. Nature. 2011;471(7336):42–3.

    Article  CAS  PubMed  Google Scholar 

  18. Balch WE, et al. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916–9.

    Article  CAS  PubMed  Google Scholar 

  19. Powers ET, Balch WE. Diversity in the origins of proteostasis networks – a driver for protein function in evolution. Nat Rev Mol Cell Biol. 2013;14(4):237–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Powers ET, et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–91.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor RC, Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol. 2011;3(5):1–17.

    Article  CAS  Google Scholar 

  22. Ryno LM, Wiseman RL, Kelly JW. Targeting unfolded protein response signaling pathways to ameliorate protein misfolding diseases. Curr Opin Chem Biol. 2013;17(3):346–52.

    Article  CAS  PubMed  Google Scholar 

  23. Bouchecareilh M, Balch WE. Proteostasis: a new therapeutic paradigm for pulmonary disease. Proc Am Thorac Soc. 2011;8(2):189–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hingorani KS, Gierasch LM. Comparing protein folding in vitro and in vivo: foldability meets the fitness challenge. Curr Opin Struct Biol. 2014;24:81–90.

    Article  CAS  PubMed  Google Scholar 

  25. Wirth AJ, Gruebele M. Quinary protein structure and the consequences of crowding in living cells: leaving the test-tube behind. Bioessays. 2013;35(11):984–93.

    Article  CAS  PubMed  Google Scholar 

  26. Hutt DM, Balch WE. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Med. 2013;3(7):1–21.

    PubMed  Google Scholar 

  27. Bouchecareilh M, Balch WE. Proteostasis, an emerging therapeutic paradigm for managing inflammatory airway stress disease. Curr Mol Med. 2012;12(7):815–26.

    Article  CAS  PubMed  Google Scholar 

  28. Roth DM, Balch WE. Modeling general proteostasis: proteome balance in health and disease. Curr Opin Cell Biol. 2011;23(2):126–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Roth DM, Balch WE. Q-bodies monitor the quinary state of the protein fold. Nat Cell Biol. 2013;15(10):1137–9.

    Article  PubMed  CAS  Google Scholar 

  30. Roth DM, et al. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol. 2014;12:e1001998 (ePub Nov 18).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Balch WE, et al. Malfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med. 2014;189(1):96–103.

    PubMed Central  PubMed  Google Scholar 

  32. Walton-Diaz A, et al. Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity. Future Med Chem. 2013;5(9):1059–71.

    Article  CAS  PubMed  Google Scholar 

  33. van Oosten-Hawle P, Morimoto RI. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling. Genes Dev. 2014;28(14):1533–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010;11(7):515–28.

    Article  CAS  PubMed  Google Scholar 

  35. Lindquist S. Protein folding sculpting evolutionary change. Cold Spring Harb Symp Quant Biol. 2009;74:103–8.

    Article  CAS  PubMed  Google Scholar 

  36. Taipale M, et al. Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells. Nat Biotechnol. 2013;31(7):630–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hutt DM, Powers ET, Balch WE. The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett. 2009;583(16):2639–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bouchecareilh M, Conkright JJ, Balch WE. Proteostasis strategies for restoring alpha1-antitrypsin deficiency. Proc Am Thorac Soc. 2010;7(6):415–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. 2009;78:147–76.

    Article  CAS  PubMed  Google Scholar 

  40. Gooptu B, Dickens JA, Lomas DA. The molecular and cellular pathology of alpha(1)-antitrypsin deficiency. Trends Mol Med. 2014;20(2):116–27.

    Article  CAS  PubMed  Google Scholar 

  41. Teckman JH. Liver disease in alpha-1 antitrypsin deficiency: current understanding and future therapy. COPD. 2013;10 Suppl 1:35–43.

    Article  PubMed  Google Scholar 

  42. Wang Y, Perlmutter DH. Targeting intracellular degradation pathways for treatment of liver disease caused by alpha1-antitrypsin deficiency. Pediatr Res. 2014;75(1–2):133–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Perlmutter DH. Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu Rev Med. 2011;62:333–45.

    Article  CAS  PubMed  Google Scholar 

  44. Marciniak SJ, Lomas DA. Genetic susceptibility. Clin Chest Med. 2014;35(1):29–38.

    Article  PubMed  Google Scholar 

  45. Kueppers F, Bearn AG. A possible experimental approach to the association of hereditary alpha-1-antitrypsin deficiency and pulmonary emphysema. Proc Soc Exp Biol Med. 1966;121(4):1207–9.

    Article  CAS  PubMed  Google Scholar 

  46. Turino GM, et al. Serum elastase inhibitor deficiency and alpha 1-antitrypsin deficiency in patients with obstructive emphysema. Science. 1969;165(3894):709–11.

    Article  CAS  PubMed  Google Scholar 

  47. Sveger T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med. 1976;294(24):1316–21.

    Article  CAS  PubMed  Google Scholar 

  48. Silverman EK, et al. Alpha-1-antitrypsin deficiency. High prevalence in the St. Louis area determined by direct population screening. Am Rev Respir Dis. 1989;140(4):961–6.

    Article  CAS  PubMed  Google Scholar 

  49. Dycaico MJ, et al. Neonatal hepatitis induced by alpha 1-antitrypsin: a transgenic mouse model. Science. 1988;242(4884):1409–12.

    Article  CAS  PubMed  Google Scholar 

  50. Sharp HL, et al. Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J Lab Clin Med. 1969;73(6):934–9.

    CAS  PubMed  Google Scholar 

  51. Carlson JA, et al. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest. 1989;83(4):1183–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. N Engl J Med. 1986;314(12):736–9.

    Article  CAS  PubMed  Google Scholar 

  53. Tan L, et al. Circulating polymers in alpha1-antitrypsin deficiency. Eur Respir J. 2014;43(5):1501–4.

    Article  CAS  PubMed  Google Scholar 

  54. Crystal RG. Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest. 1990;85(5):1343–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Stockley RA, Mannino D, Barnes PJ. Burden and pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(6):524–6.

    Article  CAS  PubMed  Google Scholar 

  56. Gooptu B, Ekeowa UI, Lomas DA. Mechanisms of emphysema in alpha1-antitrypsin deficiency: molecular and cellular insights. Eur Respir J. 2009;34(2):475–88.

    Article  CAS  PubMed  Google Scholar 

  57. Lomas DA, et al. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992;357(6379):605–7.

    Article  CAS  PubMed  Google Scholar 

  58. Lomas DA, et al. Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. Biochemistry. 1993;32(2):500–8.

    Article  CAS  PubMed  Google Scholar 

  59. Kim D, Yu MH. Folding pathway of human alpha 1-antitrypsin: characterization of an intermediate that is active but prone to aggregation. Biochem Biophys Res Commun. 1996;226(2):378–84.

    Article  CAS  PubMed  Google Scholar 

  60. James EL, et al. Probing the unfolding pathway of alpha1-antitrypsin. J Biol Chem. 1999;274(14):9482–8.

    Article  CAS  PubMed  Google Scholar 

  61. Krishnan B, Gierasch LM. Dynamic local unfolding in the serpin alpha-1 antitrypsin provides a mechanism for loop insertion and polymerization. Nat Struct Mol Biol. 2011;18(2):222–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ekeowa UI, et al. Defining the mechanism of polymerization in the serpinopathies. Proc Natl Acad Sci U S A. 2010;107(40):17146–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Gettins PG. Serpin structure, mechanism, and function. Chem Rev. 2002;102(12):4751–804.

    Article  CAS  PubMed  Google Scholar 

  64. Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000;407(6806):923–6.

    Article  CAS  PubMed  Google Scholar 

  65. Yu MH, Lee KN, Kim J. The Z type variation of human alpha 1-antitrypsin causes a protein folding defect. Nat Struct Biol. 1995;2(5):363–7.

    Article  CAS  PubMed  Google Scholar 

  66. Dafforn TR, et al. A kinetic mechanism for the polymerization of alpha1-antitrypsin. J Biol Chem. 1999;274(14):9548–55.

    Article  CAS  PubMed  Google Scholar 

  67. Lomas DA. Twenty years of polymers: a personal perspective on alpha-1 antitrypsin deficiency. COPD. 2013;10 Suppl 1:17–25.

    Article  PubMed  Google Scholar 

  68. Nyon MP, et al. Structural dynamics associated with intermediate formation in an archetypal conformational disease. Structure. 2012;20(3):504–12.

    Article  CAS  PubMed  Google Scholar 

  69. Yamasaki M, et al. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature. 2008;455(7217):1255–8.

    Article  CAS  PubMed  Google Scholar 

  70. Yamasaki M, et al. Molecular basis of alpha1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep. 2011;12(10):1011–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Ou WJ, et al. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993;364(6440):771–6.

    Article  CAS  PubMed  Google Scholar 

  72. Schmidt BZ, Perlmutter DH. Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol. 2005;289(3):G444–55.

    Article  CAS  PubMed  Google Scholar 

  73. Papp E, et al. Changes of endoplasmic reticulum chaperone complexes, redox state, and impaired protein disulfide reductase activity in misfolding alpha1-antitrypsin transgenic mice. FASEB J. 2006;20(7):1018–20.

    Article  CAS  PubMed  Google Scholar 

  74. Nyfeler B, et al. Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin. J Cell Biol. 2008;180(4):705–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Sifers RN. Intracellular processing of alpha1-antitrypsin. Proc Am Thorac Soc. 2010;7(6):376–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Stagg SM, LaPointe P, Balch WE. Structural design of cage and coat scaffolds that direct membrane traffic. Curr Opin Struct Biol. 2007;17(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  77. Miller EA, Schekman R. COPII – a flexible vesicle formation system. Curr Opin Cell Biol. 2013;25(4):420–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. 2013;14(6):382–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Routledge KE, Gupta V, Balch WE. Emergent properties of proteostasis-COPII coupled systems in human health and disease. Mol Membr Biol. 2010;27(8):385–97.

    Article  CAS  PubMed  Google Scholar 

  80. Cabral CM, et al. Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs. Mol Biol Cell. 2002;13(8):2639–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Le A, et al. Association between calnexin and a secretion-incompetent variant of human alpha 1-antitrypsin. J Biol Chem. 1994;269(10):7514–9.

    CAS  PubMed  Google Scholar 

  82. Wu Y, et al. A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc Natl Acad Sci U S A. 1994;91(19):9014–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Qu D, et al. Degradation of a mutant secretory protein, alpha1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem. 1996;271(37):22791–5.

    Article  CAS  PubMed  Google Scholar 

  84. Choudhury P, et al. Intracellular association between UDP-glucose:glycoprotein glucosyltransferase and an incompletely folded variant of alpha1-antitrypsin. J Biol Chem. 1997;272(20):13446–51.

    Article  CAS  PubMed  Google Scholar 

  85. Cabral CM, et al. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem. 2000;275(32):25015–22.

    Article  CAS  PubMed  Google Scholar 

  86. Wu Y, et al. Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A. 2003;100(14):8229–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Ferris SP, et al. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum. Mol Biol Cell. 2013;24(17):2597–608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Teckman JH, Gilmore R, Perlmutter DH. Role of ubiquitin in proteasomal degradation of mutant alpha(1)-antitrypsin Z in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol. 2000;278(1):G39–48.

    CAS  PubMed  Google Scholar 

  89. Pan S, et al. Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell. 2011;22(16):2810–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Kamimoto T, et al. Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem. 2006;281(7):4467–76.

    Article  CAS  PubMed  Google Scholar 

  91. Hidvegi T, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science. 2010;329(5988):229–32.

    Article  CAS  PubMed  Google Scholar 

  92. Kruse KB, Brodsky JL, McCracken AA. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell. 2006;17(1):203–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci. 2014;127(Pt 18):4078–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy. 2007;3(3):285–7.

    Article  PubMed  Google Scholar 

  95. Long OS, et al. A C. elegans model of human alpha1-antitrypsin deficiency links components of the RNAi pathway to misfolded protein turnover. Hum Mol Genet. 2014;23(19):5109–22.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Chu AS, Perlmutter DH, Wang Y. Capitalizing on the autophagic response for treatment of liver disease caused by alpha-1-antitrypsin deficiency and other genetic diseases. Biomed Res Int. 2014;2014:459823.

    PubMed Central  PubMed  Google Scholar 

  97. Teckman JH, Jain A. Advances in alpha-1-antitrypsin deficiency liver disease. Curr Gastroenterol Rep. 2014;16(1):367.

    Article  PubMed  Google Scholar 

  98. Pan S, et al. Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology. 2009;50(1):275–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Rab A, et al. Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol. 2013;305(8):L530–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Carp H, Janoff A. Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis. 1978;118(3):617–21.

    CAS  PubMed  Google Scholar 

  101. Taggart C, et al. Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem. 2000;275(35):27258–65.

    CAS  PubMed  Google Scholar 

  102. McElvaney NG, Greene CM. Mechanisms of protein misfolding in conformational lung diseases. Curr Mol Med. 2012;12(7):850–9.

    Article  CAS  PubMed  Google Scholar 

  103. Tuder RM, Janciauskiene SM, Petrache I. Lung disease associated with alpha1-antitrypsin deficiency. Proc Am Thorac Soc. 2010;7(6):381–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Alam S, et al. Oxidation of Z alpha1-antitrypsin by cigarette smoke induces polymerization: a novel mechanism of early-onset emphysema. Am J Respir Cell Mol Biol. 2011;45(2):261–9.

    Article  CAS  PubMed  Google Scholar 

  105. Alam S, et al. Z alpha1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(8):909–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Lockett AD, et al. Active trafficking of alpha 1 antitrypsin across the lung endothelium. PLoS One. 2014;9(4):e93979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Li Z, et al. Oxidized {alpha}1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L388–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Burns AR, Smith CW, Walker DC. Unique structural features that influence neutrophil emigration into the lung. Physiol Rev. 2003;83(2):309–36.

    Article  CAS  PubMed  Google Scholar 

  109. Kao RC, et al. Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Invest. 1988;82(6):1963–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Sinden NJ, Stockley RA. Proteinase 3 activity in sputum from subjects with alpha-1-antitrypsin deficiency and COPD. Eur Respir J. 2013;41(5):1042–50.

    Article  CAS  PubMed  Google Scholar 

  111. Churg A, Zhou S, Wright JL. Series “matrix metalloproteinases in lung health and disease”: matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197–209.

    Article  CAS  PubMed  Google Scholar 

  112. Lesser M, Padilla ML, Cardozo C. Induction of emphysema in hamsters by intratracheal instillation of cathepsin B. Am Rev Respir Dis. 1992;145(3):661–8.

    Article  CAS  PubMed  Google Scholar 

  113. Ekeowa UI, Marciniak SJ, Lomas DA. Alpha(1)-antitrypsin deficiency and inflammation. Expert Rev Clin Immunol. 2011;7(2):243–52.

    Article  CAS  PubMed  Google Scholar 

  114. Sohrab S, et al. Mechanism of alpha-1 antitrypsin endocytosis by lung endothelium. FASEB J. 2009;23(9):3149–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Paakko P, et al. Activated neutrophils secrete stored alpha 1-antitrypsin. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1829–33.

    Article  CAS  PubMed  Google Scholar 

  116. Cohen AB. Interrelationships between the human alveolar macrophage and alpha-1-antitrypsin. J Clin Invest. 1973;52(11):2793–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Cichy J, Potempa J, Travis J. Biosynthesis of alpha1-proteinase inhibitor by human lung-derived epithelial cells. J Biol Chem. 1997;272(13):8250–5.

    Article  CAS  PubMed  Google Scholar 

  118. Venembre P, et al. Secretion of alpha 1-antitrypsin by alveolar epithelial cells. FEBS Lett. 1994;346(2–3):171–4.

    Article  CAS  PubMed  Google Scholar 

  119. Geraghty P, et al. Neutrophil elastase up-regulates cathepsin B and matrix metalloprotease-2 expression. J Immunol. 2007;178(9):5871–8.

    Article  CAS  PubMed  Google Scholar 

  120. Houghton AM, et al. Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest. 2006;116(3):753–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Hubbard RC, et al. Neutrophil accumulation in the lung in alpha 1-antitrypsin deficiency. Spontaneous release of leukotriene B4 by alveolar macrophages. J Clin Invest. 1991;88(3):891–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Nakamura H, et al. Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest. 1992;89(5):1478–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Woolhouse IS, Bayley DL, Stockley RA. Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of alpha(1)-antitrypsin deficiency and the role of leukotriene B(4) and interleukin 8. Thorax. 2002;57(8):709–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Carroll TP, et al. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency. J Immunol. 2010;184(8):4538–46.

    Article  CAS  PubMed  Google Scholar 

  125. Elliott PR, Bilton D, Lomas DA. Lung polymers in Z alpha1-antitrypsin deficiency-related emphysema. Am J Respir Cell Mol Biol. 1998;18(5):670–4.

    Article  CAS  PubMed  Google Scholar 

  126. Mulgrew AT, et al. Z alpha1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest. 2004;125(5):1952–7.

    Article  CAS  PubMed  Google Scholar 

  127. Parmar JS, et al. Polymers of alpha(1)-antitrypsin are chemotactic for human neutrophils: a new paradigm for the pathogenesis of emphysema. Am J Respir Cell Mol Biol. 2002;26(6):723–30.

    Article  CAS  PubMed  Google Scholar 

  128. Miyata Y, Nakamoto H, Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des. 2013;19(3):347–65.

    Article  CAS  PubMed  Google Scholar 

  129. Pratt WB, et al. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55:353–71.

    Google Scholar 

  130. van Oosten-Hawle P, Porter RS, Morimoto RI. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell. 2013;153(6):1366–78.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. van Oosten-Hawle P, Morimoto RI. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses. J Exp Biol. 2014;217(Pt 1):129–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Silva MC, Amaral MD, Morimoto RI. Neuronal reprogramming of protein homeostasis by calcium-dependent regulation of the heat shock response. PLoS Genet. 2013;9(8):e1003711.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Darwin C. On the origin of species by means of natural selection, vol. 1. London: J. Murray; 1859. 502 p.

    Google Scholar 

  134. Dickens JA, Lomas DA. Why has it been so difficult to prove the efficacy of alpha-1-antitrypsin replacement therapy? Insights from the study of disease pathogenesis. Drug Des Devel Ther. 2011;5:391–405.

    PubMed Central  PubMed  Google Scholar 

  135. Turner AM. Alpha-1 antitrypsin deficiency: new developments in augmentation and other therapies. BioDrugs. 2013;27(6):547–58.

    Article  CAS  PubMed  Google Scholar 

  136. Turner AM. Fifty years on: GWAS confirms the role of a rare variant in lung disease. PLoS Genet. 2013;9(8):e1003768.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Thun GA, et al. Causal and synthetic associations of variants in the SERPINA gene cluster with alpha1-antitrypsin serum levels. PLoS Genet. 2013;9(8):e1003585.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Wiseman RL, et al. Protein energetics in maturation of the early secretory pathway. Curr Opin Cell Biol. 2007;19(4):359–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Wiseman RL, et al. An adaptable standard for protein export from the endoplasmic reticulum. Cell. 2007;131(4):809–21.

    Article  CAS  PubMed  Google Scholar 

  140. Wiseman RL, Balch WE. A new pharmacology – drugging stressed folding pathways. Trends Mol Med. 2005;11(8):347–50.

    Article  CAS  PubMed  Google Scholar 

  141. Powers ET, Powers DL, Gierasch LM. FoldEco: a model for proteostasis in E. coli. Cell Rep. 2012;1(3):265–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Rudnick DA, et al. Indomethacin increases liver damage in a murine model of liver injury from alpha-1-antitrypsin deficiency. Hepatology. 2006;44(4):976–82.

    Article  CAS  PubMed  Google Scholar 

  143. Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11(11):777–88.

    Article  CAS  PubMed  Google Scholar 

  144. Winkler J, et al. Chaperone networks in protein disaggregation and prion propagation. J Struct Biol. 2012;179(2):152–60.

    Article  CAS  PubMed  Google Scholar 

  145. Gosai SJ, et al. Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin alpha1-antitrypsin Z. PLoS One. 2010;5(11):e15460.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Li J, et al. Fluphenazine reduces proteotoxicity in C. elegans and mammalian models of alpha-1-antitrypsin deficiency. PLoS One. 2014;9(1):e87260.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. O’Reilly LP, et al. A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of alpha1-antitrypsin deficiency. Hum Mol Genet. 2014;23(19):5123–32.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Hidvegi T, et al. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem. 2005;280(47):39002–15.

    Article  CAS  PubMed  Google Scholar 

  149. Ordonez A, et al. Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in alpha1-antitrypsin deficiency. Hepatology. 2013;57(5):2049–60.

    Article  CAS  PubMed  Google Scholar 

  150. Lawless MW, et al. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z alpha 1-antitrypsin deficiency. J Immunol. 2004;172(9):5722–6.

    Article  CAS  PubMed  Google Scholar 

  151. Lomas DA, et al. Hypersensitive mousetraps, alpha1-antitrypsin deficiency and dementia. Biochem Soc Trans. 2002;30(2):89–92.

    Article  CAS  PubMed  Google Scholar 

  152. Liu Y, Chang A. Heat shock response relieves ER stress. EMBO J. 2008;27(7):1049–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Marcus NY, et al. Oxidative stress contributes to liver damage in a murine model of alpha-1-antitrypsin deficiency. Exp Biol Med (Maywood). 2012;237(10):1163–72.

    Article  CAS  Google Scholar 

  154. Pahl HL, Baeuerle PA. The ER-overload response: activation of NF-kappa B. Trends Biochem Sci. 1997;22(2):63–7.

    Article  CAS  PubMed  Google Scholar 

  155. Wewers MD, Crystal RG. Alpha-1 antitrypsin augmentation therapy. COPD. 2013;10 Suppl 1:64–7.

    Article  PubMed  Google Scholar 

  156. Stockley RA, Miravitlles M, Vogelmeier C. Augmentation therapy for alpha-1 antitrypsin deficiency: towards a personalised approach. Orphanet J Rare Dis. 2013;8:149.

    Article  PubMed Central  PubMed  Google Scholar 

  157. Sabina J, Tobias W. Augmentation therapy with alpha1-antitrypsin: novel perspectives. Cardiovasc Hematol Disord Drug Targets. 2013;13(2):90–8.

    Article  CAS  PubMed  Google Scholar 

  158. Mohanka M, Khemasuwan D, Stoller JK. A review of augmentation therapy for alpha-1 antitrypsin deficiency. Expert Opin Biol Ther. 2012;12(6):685–700.

    Article  CAS  PubMed  Google Scholar 

  159. Kueppers F. The role of augmentation therapy in alpha-1 antitrypsin deficiency. Curr Med Res Opin. 2011;27(3):579–88.

    Article  CAS  PubMed  Google Scholar 

  160. Gadek JE, et al. Replacement therapy of alpha 1-antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. J Clin Invest. 1981;68(5):1158–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Wewers MD, et al. Replacement therapy for alpha 1-antitrypsin deficiency associated with emphysema. N Engl J Med. 1987;316(17):1055–62.

    Article  CAS  PubMed  Google Scholar 

  162. Tonelli AR, Brantly ML. Augmentation therapy in alpha-1 antitrypsin deficiency: advances and controversies. Ther Adv Respir Dis. 2010;4(5):289–312.

    Article  CAS  PubMed  Google Scholar 

  163. Seersholm N, et al. Does alpha1-antitrypsin augmentation therapy slow the annual decline in FEV1 in patients with severe hereditary alpha1-antitrypsin deficiency? Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen (WATL) alpha1-AT study group. Eur Respir J. 1997;10(10):2260–3.

    Article  CAS  PubMed  Google Scholar 

  164. Wencker M, et al. Longitudinal follow-up of patients with alpha(1)-protease inhibitor deficiency before and during therapy with IV alpha(1)-protease inhibitor. Chest. 2001;119(3):737–44.

    Article  CAS  PubMed  Google Scholar 

  165. Tonelli AR, et al. Alpha-1-antitrypsin augmentation therapy in deficient individuals enrolled in the alpha-1 foundation DNA and tissue bank. Int J Chron Obstruct Pulmon Dis. 2009;4:443–52.

    Article  PubMed Central  PubMed  Google Scholar 

  166. Ghouse R, et al. Mysteries of alpha1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease. Dis Model Mech. 2014;7(4):411–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  167. Loring HS, Flotte TR. Current status of gene therapy for alpha-1 antitrypsin deficiency. Expert Opin Biol Ther. 2015;15(3):329–36.

    Google Scholar 

  168. Mueller C, Flotte TR. Gene-based therapy for alpha-1 antitrypsin deficiency. COPD. 2013;10 Suppl 1:44–9.

    Article  PubMed  Google Scholar 

  169. Haq I, et al. Reactive centre loop mutants of alpha-1-antitrypsin reveal position-specific effects on intermediate formation along the polymerization pathway. Biosci Rep. 2013;33(3):e00046.

    Article  PubMed Central  PubMed  Google Scholar 

  170. Patschull AO, et al. Therapeutic target-site variability in alpha1-antitrypsin characterized at high resolution. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2011;67(Pt 12):1492–7.

    Article  CAS  Google Scholar 

  171. Patschull AO, et al. In silico assessment of potential druggable pockets on the surface of alpha1-antitrypsin conformers. PLoS One. 2012;7(5):e36612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Fra AM, et al. Three new alpha1-antitrypsin deficiency variants help to define a C-terminal region regulating conformational change and polymerization. PLoS One. 2012;7(6):e38405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Pastore N, Ballabio A, Brunetti-Pierri N. Autophagy master regulator TFEB induces clearance of toxic SERPINA1/alpha-1-antitrypsin polymers. Autophagy. 2013;9(7):1094–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Teckman J, et al. Appropriateness of newborn screening for alpha1-antitrypsin deficiency. J Pediatr Gastroenterol Nutr. 2014;58(2):199–203.

    Article  PubMed  CAS  Google Scholar 

  175. Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11(8):545–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Ellis RJ, van der Vies SM. Molecular chaperones. Annu Rev Biochem. 1991;60:321–47.

    Article  CAS  PubMed  Google Scholar 

  177. Tsai B, et al. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell. 2001;104(6):937–48.

    Article  CAS  PubMed  Google Scholar 

  178. Weber-Ban EU, et al. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature. 1999;401(6748):90–3.

    Article  CAS  PubMed  Google Scholar 

  179. Brodsky JL, et al. The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem. 1999;274(6):3453–60.

    Article  CAS  PubMed  Google Scholar 

  180. Meacham GC, et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol. 2001;3(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  181. Assimon VA, et al. Hsp70 protein complexes as drug targets. Curr Pharm Des. 2013;19(3):404–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Patury S, Miyata Y, Gestwicki JE. Pharmacological targeting of the Hsp70 chaperone. Curr Top Med Chem. 2009;9(15):1337–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Zuiderweg ER, et al. Allostery in the Hsp70 chaperone proteins. Top Curr Chem. 2013;328:99–153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Alarcon SV, et al. Tumor-intrinsic and tumor-extrinsic factors impacting hsp90- targeted therapy. Curr Mol Med. 2012;12(9):1125–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Zelin E, et al. The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status. Mol Cell. 2012;48(3):459–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Tariq M, et al. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc Natl Acad Sci U S A. 2009;106(4):1157–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Minet E, et al. Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett. 1999;460(2):251–6.

    Article  CAS  PubMed  Google Scholar 

  188. Sepehrnia B, et al. Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J Biol Chem. 1996;271(25):15084–90.

    Article  CAS  PubMed  Google Scholar 

  189. DeZwaan DC, Freeman BC. HSP90 manages the ends. Trends Biochem Sci. 2010;35(7):384–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Wilkinson DS, Taylor RC, Dillin A. Analysis of aging in Caenorhabditis elegans. Methods Cell Biol. 2012;107:353–81.

    Article  CAS  PubMed  Google Scholar 

  191. Dillin A, Gottschling DE, Nystrom T. The good and the bad of being connected: the integrons of aging. Curr Opin Cell Biol. 2014;26:107–12.

    Article  CAS  PubMed  Google Scholar 

  192. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–72.

    Article  CAS  PubMed  Google Scholar 

  193. Liang P, MacRae TH. Molecular chaperones and the cytoskeleton. J Cell Sci. 1997;110(Pt 13):1431–40.

    CAS  PubMed  Google Scholar 

  194. Wettstein G, et al. Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol. 2012;44(10):1680–6.

    Article  CAS  PubMed  Google Scholar 

  195. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2003;4(3):181–91.

    Article  CAS  PubMed  Google Scholar 

  196. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article  CAS  PubMed  Google Scholar 

  197. Sekijima Y, et al. The biological and chemical basis for tissue-selective amyloid disease. Cell. 2005;121(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  198. Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol. 2011;3:a004507.

    Google Scholar 

  199. Nyon MP, Gooptu B. Therapeutic targeting of misfolding and conformational change in alpha1-antitrypsin deficiency. Future Med Chem. 2014;6(9):1047–65.

    Article  CAS  PubMed  Google Scholar 

  200. Dersh D, et al. OS-9 facilitates turnover of nonnative GRP94 marked by hyperglycosylation. Mol Biol Cell. 2014;25(15):2220–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Roussel BD, et al. Unravelling the twists and turns of the serpinopathies. FEBS J. 2011;278(20):3859–67.

    Article  CAS  PubMed  Google Scholar 

  202. Bouchecareilh M, et al. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of alpha1-antitrypsin deficiency. J Biol Chem. 2012;287(45):38265–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Coppinger JA, et al. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One. 2012;7(5):e37682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Dudek J, et al. Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci. 2009;66(9):1556–69.

    Article  CAS  PubMed  Google Scholar 

  206. Otero JH, Lizak B, Hendershot LM. Life and death of a BiP substrate. Semin Cell Dev Biol. 2010;21(5):472–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. Wang XY, Subjeck JR. High molecular weight stress proteins: identification, cloning and utilisation in cancer immunotherapy. Int J Hyperthermia. 2013;29(5):364–75.

    Article  PubMed  CAS  Google Scholar 

  208. Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett. 2007;581(19):3641–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Kakkar V, Prins LC, Kampinga HH. DNAJ proteins and protein aggregation diseases. Curr Top Med Chem. 2012;12(22):2479–90.

    Article  CAS  PubMed  Google Scholar 

  210. Evans CG, Chang L, Gestwicki JE. Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem. 2010;53(12):4585–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Nishikawa S, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem. 2005;137(5):551–5.

    Article  CAS  PubMed  Google Scholar 

  212. Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol. 2004;36(12):2435–44.

    Article  CAS  PubMed  Google Scholar 

  213. Chen CY, Balch WE. The Hsp90 chaperone complex regulates GDI-dependent Rab recycling. Mol Biol Cell. 2006;17(8):3494–507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Stagg SM, et al. Structural basis for cargo regulation of COPII coat assembly. Cell. 2008;134(3):474–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Gurkan C, et al. The COPII cage: unifying principles of vesicle coat assembly. Nat Rev Mol Cell Biol. 2006;7(10):727–38.

    Article  PubMed  CAS  Google Scholar 

  216. Stagg SM, et al. Structure of the Sec13/31 COPII coat cage. Nature. 2006;439(7073):234–8.

    Article  CAS  PubMed  Google Scholar 

  217. D'Arcangelo JG, Stahmer KR, Miller EA. Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim Biophys Acta. 2013;1833(11):2464–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  218. Zanetti G, et al. COPII and the regulation of protein sorting in mammals. Nat Cell Biol. 2012;14(1):20–8.

    Article  CAS  Google Scholar 

  219. Graef M, et al. ER exit sites are physical and functional core autophagosome biogenesis components. Mol Biol Cell. 2013;24(18):2918–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Ge L, et al. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife. 2013;2:e00947.

    Article  PubMed Central  PubMed  Google Scholar 

  221. Tan D, et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc Natl Acad Sci U S A. 2013;110(48):19432–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Jackson LP. Structure and mechanism of COPI vesicle biogenesis. Curr Opin Cell Biol. 2014;29:67–73.

    Article  CAS  PubMed  Google Scholar 

  223. Faini M, et al. Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. 2013;23(6):279–88.

    Article  CAS  PubMed  Google Scholar 

  224. Allan BB, Balch WE. Protein sorting by directed maturation of Golgi compartments. Science. 1999;285(5424):63–6.

    Article  CAS  PubMed  Google Scholar 

  225. Granell S, et al. Sequestration of mutated alpha1-antitrypsin into inclusion bodies is a cell-protective mechanism to maintain endoplasmic reticulum function. Mol Biol Cell. 2008;19(2):572–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Zuber C, et al. EDEM1 reveals a quality control vesicular transport pathway out of the endoplasmic reticulum not involving the COPII exit sites. Proc Natl Acad Sci U S A. 2007;104(11):4407–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Le Fourn V, et al. Large protein complexes retained in the ER are dislocated by non-COPII vesicles and degraded by selective autophagy. Cell Mol Life Sci. 2013;70(11):1985–2002.

    Article  PubMed  CAS  Google Scholar 

  228. Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(4096):223–30.

    Article  CAS  PubMed  Google Scholar 

  229. Jin L, et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature. 2012;482(7386):495–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. Fryer LG, et al. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis. J Biol Chem. 2014;289(7):4244–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  231. Russo R, Esposito MR, Iolascon A. Inherited hematological disorders due to defects in coat protein (COP)II complex. Am J Hematol. 2013;88(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  232. Barlowe CK, Miller EA. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics. 2013;193(2):383–410.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Saito K, et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell. 2009;136(5):891–902.

    Article  CAS  PubMed  Google Scholar 

  234. Saito K, et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol Biol Cell. 2011;22(13):2301–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Reiterer V, Nyfeler B, Hauri HP. Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Traffic. 2010;11(8):1044–55.

    Article  CAS  PubMed  Google Scholar 

  236. Gelling CL, et al. The endosomal protein-sorting receptor sortilin has a role in trafficking alpha-1 antitrypsin. Genetics. 2012;192(3):889–903.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  237. Freeze HH, Ng BG. Golgi glycosylation and human inherited diseases. Cold Spring Harb Perspect Biol. 2011;3(9):a005371.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  238. Mattiroli F, Sixma TK. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nat Struct Mol Biol. 2014;21(4):308–16.

    Article  CAS  PubMed  Google Scholar 

  239. Kovacs JJ, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18(5):601–7.

    Article  CAS  PubMed  Google Scholar 

  240. Marinova Z, et al. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem. 2009;111(4):976–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  241. Hageman J, et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell. 2010;37(3):355–69.

    Article  CAS  PubMed  Google Scholar 

  242. Rao R, et al. Treatment with panobinostat induces glucose-regulated protein 78 acetylation and endoplasmic reticulum stress in breast cancer cells. Mol Cancer Ther. 2010;9(4):942–52.

    Article  CAS  PubMed  Google Scholar 

  243. Kahali S, et al. Class I histone deacetylases localize to the endoplasmic reticulum and modulate the unfolded protein response. FASEB J. 2012;26(6):2437–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  244. Westerheide SD, et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science. 2009;323(5917):1063–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  245. Wagner SA, et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics. 2011;10(10):M111.013284.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  246. Gao YS, Hubbert CC, Yao TP. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J Biol Chem. 2010;285(15):11219–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  247. Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12(12):773–86.

    Article  CAS  PubMed  Google Scholar 

  248. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91.

    Article  CAS  PubMed  Google Scholar 

  249. Hutt DM, et al. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol. 2010;6(1):25–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Lu J, et al. Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease. Proc Natl Acad Sci U S A. 2011;108(52):21200–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Moresi V, et al. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell. 2010;143(1):35–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Helquist P, et al. Treatment of Niemann – pick type C disease by histone deacetylase inhibitors. Neurotherapeutics. 2013;10(4):688–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  253. Pipalia NH, et al. Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. Proc Natl Acad Sci U S A. 2011;108(14):5620–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  254. Coppede F. The potential of epigenetic therapies in neurodegenerative diseases. Front Genet. 2014;5:220.

    PubMed Central  PubMed  Google Scholar 

  255. Shan B, et al. Quantitative proteomic analysis identifies targets and pathways of a 2-aminobenzamide HDAC inhibitor in Friedreich’s ataxia patient iPSC-derived neural stem cells. J Proteome Res. 2014;13(11):4558–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  256. Jia H, et al. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis. 2012;46(2):351–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Xu C, et al. Chemical probes identify a role for histone deacetylase 3 in Friedreich’s ataxia gene silencing. Chem Biol. 2009;16(9):980–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Herman D, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006;2(10):551–8.

    Article  CAS  PubMed  Google Scholar 

  259. Chang YP, et al. Targeting serpins in high-throughput and structure-based drug design. Methods Enzymol. 2011;501:139–75.

    Article  CAS  PubMed  Google Scholar 

  260. Leoni F, et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A. 2002;99(5):2995–3000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  261. Lin HS, et al. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 2007;150(7):862–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Royce SG, et al. Resveratrol has protective effects against airway remodeling and airway hyperreactivity in a murine model of allergic airways disease. Pathobiol Aging Age Relat Dis. 2011;1:7134.

    Google Scholar 

  263. Hou X, et al. Histone deacetylase inhibitor regulates the balance of Th17/Treg in allergic asthma. Clin Respir J. 2014 [Epub ahead of print].

    Google Scholar 

  264. Zhou H, et al. Suberoylanilide hydroxamic acid suppresses inflammation-induced neovascularization. Can J Physiol Pharmacol. 2014;92(10):879–85.

    Article  CAS  PubMed  Google Scholar 

  265. Ito K, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005;352(19):1967–76.

    Article  CAS  PubMed  Google Scholar 

  266. Ito K, et al. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 2001;15(6):1110–2.

    CAS  PubMed  Google Scholar 

  267. Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131(3):636–45.

    Article  CAS  PubMed  Google Scholar 

  268. Winkler AR, Nocka KN, Williams CM. Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production. Pulm Pharmacol Ther. 2012;25(4):286–92.

    Article  CAS  PubMed  Google Scholar 

  269. Isajevs S, et al. Different patterns of lung sirtuin expression in smokers with and without chronic obstructive pulmonary disease. Medicina (Kaunas). 2012;48(10):552–7.

    Google Scholar 

  270. Sun Q, et al. Overexpression of response gene to complement 32 (RGC32) promotes cell invasion and induces epithelial-mesenchymal transition in lung cancer cells via the NF-kappaB signaling pathway. Tumour Biol. 2013;34(5):2995–3002.

    Article  CAS  PubMed  Google Scholar 

  271. Yao H, et al. SIRT1 redresses the imbalance of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9 in the development of mouse emphysema and human COPD. Am J Physiol Lung Cell Mol Physiol. 2013;305(9):L615–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Yao H, et al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012;122(6):2032–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  273. Ichikawa T, et al. Sirtuin 1 activator SRT1720 suppresses inflammation in an ovalbumin-induced mouse model of asthma. Respirology. 2013;18(2):332–9.

    Article  PubMed  Google Scholar 

  274. Jarosz DF, Taipale M, Lindquist S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet. 2010;44:189–216.

    Article  CAS  PubMed  Google Scholar 

  275. Jarosz DF, Lindquist S. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science. 2010;330(6012):1820–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Gershenson A, et al. Energy landscapes of functional proteins are inherently risky. Nat Chem Biol. 2014;10(11):884–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institute of Health GM33301 and GM42336 for WEB, TRDRP 21XT-0070. CW is supported by postdoctoral research fellowship from Alpha-1 Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Balch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, C., Balch, W.E. (2016). Managing the Adaptive Proteostatic Landscape: Restoring Resilience in Alpha-1 Antitrypsin Deficiency. In: Wanner, A., Sandhaus, R. (eds) Alpha-1 Antitrypsin. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-23449-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23449-6_4

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-23448-9

  • Online ISBN: 978-3-319-23449-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics