Skip to main content

A program for branching problems in the representation theory of real reductive groups

  • Chapter
  • First Online:
Representations of Reductive Groups

Part of the book series: Progress in Mathematics ((PM,volume 312))

Abstract

We wish to understand how irreducible representations of a group G behave when restricted to a subgroup G′ (the branching problem). Our primary concern is with representations of reductive Lie groups, which involve both algebraic and analytic approaches. We divide branching problems into three stages: (A) abstract features of the restriction; (B) branching laws (irreducible decompositions of the restriction); and (C) construction of symmetry breaking operators on geometric models. We could expect a simple and detailed study of branching problems in Stages B and C in the settings that are a priori known to be “nice” in Stage A, and conversely, new results and methods in Stage C that might open another fruitful direction of branching problems including Stage A. The aim of this article is to give new perspectives on the subjects, to explain the methods based on some recent progress, and to raise some conjectures and open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adams, Unitary highest weight modules, Adv. in Math. 63 (1987), 113–137.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Aizenbud and D. Gourevitch, Multiplicity one theorem for \((GL_{n+1}(\mathbb{R}),GL_{n}(\mathbb{R}))\), Selecta Math. 15 (2009), 271–294.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Berger, Les espaces symétriques non compacts, Ann. Sci. École Norm. Sup. 74 (1957), 85–177.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. N. Bernstein and S. I. Gelfand, Meromorphic property of the functions \(P^{\lambda }\), Funktsional Anal, i Prilozhen., 3 (1969), 84–85.

    Google Scholar 

  5. F. Bien, Orbit, multiplicities, and differential operators, Contemp. Math. 145, Amer. Math. Soc., 1993, 199–227.

    Google Scholar 

  6. M. Brion, Classification des espaces homogènes sphériques, Compos. Math. 63 (1986), 189–208.

    MathSciNet  MATH  Google Scholar 

  7. R. Brylinski, Geometric quantization of real minimal nilpotent orbits, Differential Geom. Appl. 9 (1998), 5–58.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.-L. Clerc, T. Kobayashi, B. Ørsted, and M. Pevzner, Generalized Bernstein–Reznikov integrals, Math. Ann., 349 (2011), 395–431.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann., 217 (1975), 271–285.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Delorme, Formule de Plancherel pour les espaces symétriques réductifs, Ann. of Math. (2), 147 (1998), 417–452.

    Google Scholar 

  11. G. van Dijk and M. Pevzner, Ring structures for holomorphic discrete series and Rankin-Cohen brackets, J. Lie Theory, 17, (2007), 283–305.

    MathSciNet  MATH  Google Scholar 

  12. M. Duflo and J. A. Vargas, Branching laws for square integrable representations, Proc. Japan Acad. Ser. A, Math. Sci. 86 (2010), 49–54.

    Google Scholar 

  13. T. Enright and J. Willenbring, Hilbert series, Howe duality and branching for classical groups, Ann. of Math. (2) 159 (2004), 337–375.

    Google Scholar 

  14. B. Gross and D. Prasad, On the decomposition of a representations of SO n when restricted to SO n−1, Canad. J. Math. 44 (1992), 974–1002.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Gross and N. Wallach, Restriction of small discrete series representations to symmetric subgroups, Proc. Sympos. Pure Math., 68 (2000), Amer. Math. Soc., 255–272.

    Google Scholar 

  16. Harish-Chandra, Representations of semisimple Lie groups on a Banach space, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 170–173.

    Google Scholar 

  17. M. Harris and H. P. Jakobsen, Singular holomorphic representations and singular modular forms, Math. Ann., 259 (1982), 227–244.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Howe, \(\theta\) -series and invariant theory, Proc. Symp. Pure Math. 33 (1979), Amer. Math. Soc., 275–285.

    Google Scholar 

  19. R. Howe, Reciprocity laws in the theory of dual pairs, Progr. Math. Birkhäuser, 40, (1983), 159–175.

    MathSciNet  MATH  Google Scholar 

  20. R. Howe and C. Moore, Asymptotic properties of unitary representations. J. Funct. Anal. 32, (1979), 72–96.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Juhl, Families of conformally covariant differential operators, Q-curvature and holography. Progr. Math., 275. Birkhäuser, 2009.

    Google Scholar 

  22. M. Kashiwara and M. Vergne, K-types and singular spectrum, In: Lect. Notes in Math., Vol. 728, 1979, Springer-Verlag, 177–200.

    Google Scholar 

  23. B. Kimelfeld, Homogeneous domains in flag manifolds of rank 1, J. Math. Anal. & Appl. 121, (1987), 506–588.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. W. Knapp and D. Vogan, Jr., Cohomological Induction and Unitary Representations, Princeton U.P., 1995.

    Book  MATH  Google Scholar 

  25. T. Kobayashi, The restriction of \(A_{\mathfrak{q}}(\lambda )\) to reductive subgroups, Proc. Japan Acad., 69 (1993), 262–267.

    Article  MathSciNet  Google Scholar 

  26. T. Kobayashi, Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups and its applications, Invent. Math., 117, (1994), 181–205.

    Article  MathSciNet  Google Scholar 

  27. T. Kobayashi, Introduction to harmonic analysis on real spherical homogeneous spaces, Proceedings of the 3rd Summer School on Number Theory “Homogeneous Spaces and Automorphic Forms” in Nagano (F. Sato, ed.), 1995, 22–41 (in Japanese).

    Google Scholar 

  28. T. Kobayashi, Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups II – micro-local analysis and asymptotic K-support, Ann. of Math., 147, (1998), 709–729.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Kobayashi, Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups III – restriction of Harish-Chandra modules and associated varieties, Invent. Math., 131, (1998), 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Kobayashi, Harmonic analysis on homogeneous manifolds of reductive type and unitary representation theory, Translations, Series II, Selected Papers on Harmonic Analysis, Groups, and Invariants (K. Nomizu, ed.), 183, (1998), Amer. Math. Soc., 1–31.

    Google Scholar 

  31. T. Kobayashi, Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal., 152, (1998), 100–135.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Kobayashi, Discretely decomposable restrictions of unitary representations of reductive Lie groups —examples and conjectures, Advanced Study in Pure Math., 26, (2000), 98–126.

    MathSciNet  MATH  Google Scholar 

  33. T. Kobayashi, Restrictions of unitary representations of real reductive groups, Progr. Math., Vol. 229, pages 139–207, Birkhäuser, 2005.

    Google Scholar 

  34. T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41, (2005), 497–549.

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, 45–109, Progr. Math., Vol. 255, Birkhäuser, Boston, 2008.

    Google Scholar 

  36. T. Kobayashi, Branching problems of Zuckerman derived functor modules, In: Representation Theory and Mathematical Physics (in honor of Gregg Zuckerman), Contemporary Mathematics, 557, 23–40. Amer. Math. Soc., Providence, RI, 2011.

    Book  Google Scholar 

  37. T. Kobayashi, Restrictions of generalized Verma modules to symmetric pairs, Transform. Group, 17, (2012), 523–546.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Kobayashi, F-method for constructing equivariant differential operators, Geometric Analysis and Integral Geometry Contemporary Mathematics (in honor of S. Helgason), 598, Amer. Math. Soc., 2013, 141–148.

    Google Scholar 

  39. T. Kobayashi, Propagation of multiplicity-freeness property for holomorphic vector bundles, Progr. Math., Vol. 306, Birkhäuser, 2013, 113–140.

    Google Scholar 

  40. T. Kobayashi, F-method for symmetry breaking operators, Differential Geom. Appl. 33 (2014), 272–289, Special issue in honor of M. Eastwood.

    Google Scholar 

  41. T. Kobayashi, Shintani functions, real spherical manifolds, and symmetry breaking operators, Developments in Mathematics, 37 (2014), 127–159.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Kobayashi, T. Kubo, and M. Pevzner, Vector-valued covariant differential operators for the Möbius transformation, Springer Proceedings in Mathematics & Statistics, 111, 67–86, 2015.

    Google Scholar 

  43. T. Kobayashi and G. Mano, The Schrödinger model for the minimal representation of the indefinite orthogonal group O(p,q), Mem. Amer. Math. Soc. (2011), 212, no. 1000, vi+132 pages.

    Google Scholar 

  44. T. Kobayashi and T. Matsuki, Classification of finite-multiplicity symmetric pairs, Transform. Groups 19 (2014), 457–493, Special issue in honor of Dynkin for his 90th birthday.

    Google Scholar 

  45. T. Kobayashi and B. Ørsted, Analysis on the minimal representation ofO (p,q). Part I, Adv. Math., 180, (2003) 486–512; Part II, ibid, 513–550; Part III, ibid, 551–595.

    Google Scholar 

  46. T. Kobayashi, B. Ørsted, and M. Pevzner, Geometric analysis on small unitary representations of \(GL(n, \mathbb{R})\), J. Funct. Anal., 260, (2011) 1682–1720.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Kobayashi, B. Ørsted, P. Somberg, and V. Souček, Branching laws for Verma modules and applications in parabolic geometry, Adv. Math., 285, (2015), 1796–1852 doi: 10.1016/j.aim.2015.08.020, (available also at arXiv:1305.6040).

    Google Scholar 

  48. T. Kobayashi and T. Oshima, Finite multiplicity theorems for induction and restriction, Adv. Math., 248, (2013), 921–944.

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Kobayashi and Y. Oshima, Classification of discretely decomposable \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive symmetric pairs, Adv. Math., 231 (2012), 2013–2047.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Kobayashi and Y. Oshima, Classification of symmetric pairs with discretely decomposable restrictions of \((\mathfrak{g},K)\) -modules, Journal für die reine und angewandte Mathematik, 2015, (2015), no.703, 201–223.

    Article  MathSciNet  MATH  Google Scholar 

  51. T. Kobayashi and M. Pevzner, Differential symmetry breaking operators. I . General theory and F-method, to appear in Selecta Math., 44 pages; II . Rankin–Cohen operators for symmetric pairs, to appear in Selecta Math., 64 pages, (available also at arXiv:1301.2111).

    Google Scholar 

  52. T. Kobayashi and B. Speh, Symmetry breaking for representations of rank one orthogonal groups, (2015), Memoirs of Amer. Math. Soc. 238, no.1126, 118 pages.

    Google Scholar 

  53. M. Krämer, Multiplicity free subgroups of compact connected Lie groups, Arch. Math. (Basel) 27, (1976), 28–36.

    Article  MathSciNet  MATH  Google Scholar 

  54. T. Matsuki, Orbits on flag manifolds, Proceedings of the International Congress of Mathematicians, Kyoto 1990, Vol. II (1991), Springer-Verlag, 807–813.

    Google Scholar 

  55. T. Matsuki and T. Oshima, A description of discrete series for semisimple symmetric spaces, Adv. Stud. Pure Math. 4, (1984), 331–390.

    MathSciNet  MATH  Google Scholar 

  56. I. V. Mikityuk, Integrability of invariant Hamiltonian systems with homogeneous configuration spaces, Math. USSR-Sbornik 57, (1987), 527–546.

    Article  MATH  Google Scholar 

  57. V. F. Molchanov, Tensor products of unitary representations of the three-dimensional Lorentz group, Math. USSR, Izv. 15, (1980), 113–143.

    Google Scholar 

  58. J. Möllers and B. Ørsted, Estimates for the restriction of automorphic forms on hyperbolic manifolds to compact geodesic cycles, to appear in Int. Math. Res. Not. IMRN.

    Google Scholar 

  59. B. Ørsted and B. Speh, Branching laws for some unitary representations of \(SL(4, \mathbb{R})\), SIGMA 4, (2008), doi:10.3842/SIGMA.2008.017.

    Google Scholar 

  60. Y. Oshima, Discrete branching laws of Zuckerman’s derived functor modules, Ph.D. thesis, the University of Tokyo, 2013.

    Google Scholar 

  61. J. Peetre, Une caractérisation abstraite des opérateurs différentiels, Math. Scand., 7, (1959), 211–218.

    Article  MathSciNet  MATH  Google Scholar 

  62. R. A. Rankin, The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc., 20, (1956), 103–116.

    MathSciNet  MATH  Google Scholar 

  63. J. Repka, Tensor products of holomorphic discrete series representations, Can. J. Math., 31, (1979), 836–844.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Richardson, G. Röhrle, and R. Steinberg, Parabolic subgroup with abelian unipotent radical, Invent. Math., 110 (1992), 649–671.

    Article  MathSciNet  MATH  Google Scholar 

  65. W. Schmid, Die Randwerte holomorphe Funktionen auf hermetisch symmetrischen Raumen, Invent. Math., 9, (1969–70), 61–80.

    Google Scholar 

  66. W. Schmid, Boundary value problems for group invariant differential equations, Astérisque (1985), 311–321.

    Google Scholar 

  67. J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39, (1987), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  68. B. Sun and C.-B. Zhu, Multiplicity one theorems: the Archimedean case, Ann. of Math. 175, (2012), 23–44.

    Google Scholar 

  69. D. A. Vogan, Jr., Representations of Real Reductive Lie Groups, Progr. Math., Vol. 15, Birkhäuser, 1981.

    Google Scholar 

  70. D. A. Vogan, Jr., Unitarizability of certain series of representations, Ann. of Math. 120, (1984), 141–187.

    Article  MathSciNet  MATH  Google Scholar 

  71. D. A. Vogan, Jr., Irreducibility of discrete series representations for semisimple symmetric spaces, Adv. Stud. Pure Math. 14, (1988), 191–221.

    MathSciNet  MATH  Google Scholar 

  72. D. A. Vogan, Jr., Associated varieties and unipotent representations, Progr. Math., Vol. 101, (1991), Birkhäuser, 315–388.

    Google Scholar 

  73. D. A. Vogan, Jr. and G. J. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), 51–90.

    MathSciNet  MATH  Google Scholar 

  74. N. R. Wallach, Real reductive groups. I, II, Pure and Applied Mathematics, Vol. 132, Academic Press, Inc., Boston, MA, 1988.

    Google Scholar 

  75. H. Wong, Dolbeault cohomological realization of Zuckerman modules associated with finite rank representations, J. Funct. Anal. 129, (1995), 428–454.

    Article  MathSciNet  MATH  Google Scholar 

  76. D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. (Math. Sci.) 104, (1994), 57–75.

    Article  MathSciNet  MATH  Google Scholar 

  77. F. Zhu and K. Liang, On a branching law of unitary representations and a conjecture of Kobayashi, C. R. Acad. Sci. Paris, Ser. I, 348, (2010), 959–962.

    Google Scholar 

Download references

Acknowledgements

The author thanks J.-L. Clerc, T. Kubo, T. Matsuki, B. Ørsted, T. Oshima, Y. Oshima, M. Pevzner, P. Somberg, V. Souček, B. Speh for their collaboration on the papers which are mentioned in this article. This article is based on the lecture that the author delivered at the conference Representations of reductive groups in honor of David Vogan on his 60th birthday at MIT, 19-23 May 2014. He would like to express his gratitude to the organizers, Roman Bezrukavnikov, Pavel Etingof, George Lusztig, Monica Nevins, and Peter Trapa, for their warm hospitality during the stimulating conference.

This work was partially supported by Grant-in-Aid for Scientific Research (A) (25247006), Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kobayashi .

Editor information

Editors and Affiliations

Additional information

Dedicated to David Vogan on the occasion of his 60th birthday, with admiration of his epoch-making contributions to the field

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kobayashi, T. (2015). A program for branching problems in the representation theory of real reductive groups. In: Nevins, M., Trapa, P. (eds) Representations of Reductive Groups. Progress in Mathematics, vol 312. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-23443-4_10

Download citation

Publish with us

Policies and ethics