Skip to main content

Dynamic Time Warping Based on Modified Alignment Costs for Evoked Potentials Averaging

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

Abstract

Averaging of time-warped signal cycles is an important tool for suppressing noise of quasi-periodic or event related signals. However, in the paper we show that the operation of time warping introduces unfavorable correlation among the noise components of the summed cycles. Such correlation violates the requirements necessary for effective averaging and results in poor suppression of noise. To limit these effects, we redefine the matrix of the alignment costs. The proposed modifications result in significant increase of the noise reduction factor in the experiments on different types and levels of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartnik, E., Blinowska, K., Durka, P.: Single evoked potential reconstruction by means of wavelet transform. Biol. Cybern. 67(2), 175–181 (1992)

    Article  MATH  Google Scholar 

  2. Cerutti, S., Baselli, G., Liberati, D., Avesi, G.: Single sweep analysis of visual evoked potentials through a model of parametric identification. Biol. Cybern. 56(2–3), 111–120 (1987)

    Article  Google Scholar 

  3. Dawson, G.: A summation technique for the detection of small evoked potentials. Electroencephalogr. Clin. Neurophysiol. 6, 65–84 (1954)

    Article  Google Scholar 

  4. Gibbons, H., Stahl, J.: Response-time corrected averaging of event-related potentials. Clin. Neurophysiol. 118(1), 197–208 (2007)

    Article  Google Scholar 

  5. Gupta, L., Molfese, D., Tammana, R., Simos, P.: Nonlinear alignment and averaging for estimating the evoked potential. Trans. Biomed. Eng. 43(4), 348–356 (1996)

    Article  Google Scholar 

  6. Kotas, M.: Projective filtering of time-warped ECG beats. Comput. Biol. Med. 38(1), 127–137 (2008)

    Article  Google Scholar 

  7. Kotas, M.: Robust projective filtering of time-warped ECG beats. Comput. Methods Programs Biomed. 92(2), 161–172 (2008)

    Article  Google Scholar 

  8. McGillem, C., Aunon, J.: Measurements of signal components in single visually evoked brain response. Trans. Biomed. Eng. 24(3), 232–241 (1977)

    Article  Google Scholar 

  9. Petitjean, F., Ketterlin, A., Gancarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognit. 44(3), 678–693 (2011)

    Article  MATH  Google Scholar 

  10. Picton, T., Lins, O., Scherg, M.: Dynamic programming algorithm optimization for spoken word recognition. Trans. Signal Process. 26(1), 43–49 (1978)

    Google Scholar 

  11. Quiroga, R.Q.: Obtaining single stimulus evoked potentials with wavelet denoising. Physica 145, 278–292 (2000)

    MATH  Google Scholar 

  12. Rompelmann, O.R.H.: Coherent averaging technique: a tutorial review. J. Biomed. Eng. 8(1), 24–35 (1986)

    Article  Google Scholar 

  13. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  14. Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., Wolpa, J.: BCI 2000: a general-purpose brain-computer interface (BCI) system. Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  15. Wang, K., Begleiter, H., Porjesz, B.: Warp-averaging event-related potentials. Clin. Neurophysiol. 112(10), 1917–1924 (2001)

    Article  Google Scholar 

  16. Wang, K., Gasser, T.: Synchronising sample curves nonparametrically. Ann. Stat. 27(2), 439–460 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, T., Lin, L., Zhang, A., Peng, X., Zhan, C.: EMD-based EEG signal enhancement for auditory evoked potential recovery under high stimulus-rate paradigm. Biomed. Signal Process. Control 8(6), 858–868 (2013)

    Article  Google Scholar 

  18. Woody, C.: Characterisation of an adaptive filter for the analysis of variable latency neuroelectric signals. Med. Biol. Eng. Comput. 5(6), 539–553 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by statutory funds (BK-2015, BKM-2015) of the Institute of Electronics, Silesian University of Technology and GeCONiI project (T. Moroń). The work was performed using the infrastructure supported by POIG.02.03.01-24-099/13 grant: GeCONiI–Upper Silesian Center for Computational Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Kotas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kotas, M., Leski, J.M., Moroń, T. (2016). Dynamic Time Warping Based on Modified Alignment Costs for Evoked Potentials Averaging. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics