Skip to main content

Application of Dimensionality Reduction Methods for Eye Movement Data Classification

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

Abstract

In this paper we apply two data dimensionality reduction methods to eye movement dataset and analyse how the feature reduction method improves classification accuracy. Due to the specificity of the recording process, eye movement datasets are characterized by both big size and high-dimensionality that make them difficult to analyse and classify using standard classification approaches. Here, we analyse eye movement data from BioEye 2015 competition and to deal with the problem of high dimensionality we apply SVM combined with PCA feature extraction and random forests wrapper variable selection. Our results show that the reduction of the number of variables improves classification results. We also show that some of classes (participants) can be classified (recognised) with high accuracy while others are very difficult to be correctly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Data Classification: Algorithms and Applications. Data Mining and Knowledge Discovery. Hapman and Hall CRC, Boca Raton (2014)

    Google Scholar 

  2. Bednarik, R., Kinnunen, T., Mihaila, A., Fränti, P.: Eye-movements as a biometric. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) Image Analysis. LNCS, vol. 3540, pp. 780–789. Springer, Berlin (2005)

    Google Scholar 

  3. Bensch, M., Schroder, M., Bogdan, M., Rosenstiel, W.: Feature selection for high-dimensional industrial data. In: ESANN 2005. pp. 375–380. Bruges, Belgium (2005)

    Google Scholar 

  4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD workshop 1994. vol. 10, pp. 359–370. Seattle, USA (1994)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Burges, C.J.C.: Dimension reduction: a guided tour. Found. Trends Mach. Learn. 2(4), 275–365 (2010)

    Article  Google Scholar 

  7. Díaz-Uriarte, R., Alvarez de Andrés, S.: Gene selection and classification of microarray data using random forest. BMC Bioinform. 7(1), 3 (2006)

    Google Scholar 

  8. Gregorutti, B., Michel, B., Saint Pierre, P.: Correlation and variable importance in random forests. arXiv:1310.5726. (2015)

  9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  MATH  Google Scholar 

  10. Holzer, S., Ilic, S., Tan, D., Navab, N.: Efficient learning of linear predictors using dimensionality reduction. In: Lee, K., Matsushita, Y., Rehg, J., Hu, Z. (eds.) Computer Vision–ACCV 2012, LNCS, vol. 7726, pp. 15–28. Springer, Berlin (2013)

    Chapter  Google Scholar 

  11. Kasprowski, P., Harezlak, K.: The second eye movements verification and identification competition. In: IJCB 2014. pp. 1–6. Clearwater, USA (2014)

    Google Scholar 

  12. Kasprowski, P., Komogortsev, O.V., Karpov, A.: First eye movement verification and identification competition at BTAS 2012. In: BTAS 2012. pp. 195–202. Arlington, USA (2012)

    Google Scholar 

  13. Kasprowski, P., Ober, J.: Eye movements in biometrics. In: Maltoni, D., Jain, A.K. (eds.) Biometric Authentication. LNCS, vol. 3087, pp. 248–258. Springer, Berlin (2004)

    Chapter  Google Scholar 

  14. Kohavi, R., Johnb, G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  15. Kursa, M., Jankowski, A., Rudnicki, W.: Boruta—a system for feature selection. J. Am. Water Work. Assoc. Fundamenta Informaticae 101(4), 271–285 (2010)

    MathSciNet  Google Scholar 

  16. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  17. Miller, R., Chen, C., Eick, C., Bagherjeiran, A.: A framework for spatial feature selection and scoping and its application to geo-targeting. In: ICSDM 2011. pp. 26–31. Detroit, USA (2011)

    Google Scholar 

  18. Pekalska, E., Duin, R.P., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognit. 39(2), 189–208 (2006)

    Article  MATH  Google Scholar 

  19. Saeed, U.: A survey of automatic person recognition using eye movements. Int. J. Pattern Recognit. Artif. Intell. 28(08), 1456015 (2014)

    Article  Google Scholar 

  20. Sikora, M.: Redefinition of decision rules based on the importance of elementary conditions evaluation. Fundamenta Informaticae 123(2), 171–197 (2013)

    MATH  MathSciNet  Google Scholar 

  21. Sikora, M., Gruca, A.: Quality improvement of rule-based gene group descriptions using information about go terms importance occurring in premises of determined rules. Appl. Math. Comput. Sci. 20(3), 555–570 (2010)

    MATH  MathSciNet  Google Scholar 

  22. Svetnik, V., Liaw, A., Tong, C., Wang, T.: Application of breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. In: Roli, F., Kittler, J., Windeatt, T. (eds.) Multiple Classifier Systems. LNCS, vol. 3077, pp. 334–343. Springer, Berlin (2004)

    Google Scholar 

  23. Touw, W., Bayjanov, J., Overmars, L., Backus, L., Boekhorst, J., Wels, M., van Hijum, S.: Data mining in the life sciences with random forest: a walk in the park or lost in the jungle. Brief. Bioinform. 14(3), 315–326 (2013)

    Article  Google Scholar 

  24. Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. In: NIPS 1996. pp. 281–287. Denver, USA (1996)

    Google Scholar 

Download references

Acknowledgments

The work was partially supported by National Science Centre (decision DEC-2011/01/D/ST6/07007) (A.G). Computations were performed with the use of the infrastructure provided by the NCBIR POIG.02.03.01-24-099/13 grant: GCONiI - Upper-Silesian Center for Scientific Computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Gruca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gruca, A., Harezlak, K., Kasprowski, P. (2016). Application of Dimensionality Reduction Methods for Eye Movement Data Classification. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics