Skip to main content

Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter

  • Conference paper
  • First Online:
  • 990 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

Abstract

Models in systems biology, which reflect complex dynamic biological phenomena are most often described as ordinary differential equations (ODE). Characteristic properties of these differential equations is nonlinearity and large size (number of state variables). These models also contain large numbers of unknown parameters. So the main challenge in developing models in systems biology is estimation of numerous unknown parameters in nonlinear differential equations. There are already numerous approaches to parameter estimation in systems biology models. However, main difficulties speed of convergence and multiple minima (multiple solutions) are still obstacles in achieving solutions of sufficient efficiency. In this chapter we propose a new approach based on combination of extended Kalman filtering dynamical optimization with spline approximation of solutions to ODE, for parameter estimation in systems biology models. We present the main idea and we show comparisons to some published results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2013)

    Google Scholar 

  3. Humpherys, J., Redd, P., West, J.: A fresh look at the kalman filter. SIAM Rev. 54(4), 801–823 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Fluids Eng. 82(1), 35–45 (1960)

    Google Scholar 

  5. Kwang-Hyun, C., Sung-Young, S., Hyun-Woo, K., Olaf, W., Brian, M.F., Walter, K.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, Corrado (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)

    Google Scholar 

  6. Lillacci, G., Khammash, M.: Parameter estimation and model selection in computational biology. PLOS Comput. Biol. 6(3), e1000696 (2010)

    Article  MathSciNet  Google Scholar 

  7. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)

    Article  Google Scholar 

  9. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003)

    Article  Google Scholar 

  10. Nakamura, K., Yoshida, R., Nagasaki, M., Miyano, S., Higuchi, T.: Parameter estimation of in silico biological pathways with particle filtering towards a petascale computing. PSB 2009, pp. 227–238. Fairmont Orchid, Hawaii (2009)

    Google Scholar 

  11. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MATH  Google Scholar 

  12. Powell, M.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G. (ed.) Numerical Analysis. LNM, vol. 630, pp. 144–157. Springer, Berlin (1978)

    Google Scholar 

  13. Quach, M., Brunel, N., d’Alché Buc, F.: Estimating parameters and hidden variables in non-linear state-space models based on odes for biological networks inference. Bioinformatics 23(23), 3209–3216 (2007)

    Article  Google Scholar 

  14. Sun, X., Jin, L., Xiong, M.: Extended kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PLOS One 3(11), e3758 (2008)

    Article  Google Scholar 

  15. Yang, J., Kadirkamanathan, V., Billings, S.A.: In vivo intracellular metabolite dynamics estimation by sequential monte carlo filter. In: CIBCB 2007, pp. 387–394. Honolulu (2007)

    Google Scholar 

  16. Zhan, C., Yeung, L.F.: Parameter estimation in systems biology models using spline approximation. BMC Syst. Biol. 5(1), 14 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was partially financially supported by the NCN Opus grant UMO-2011/01/B/ST6/06868 to AP. Computations were performed with the use of the infrastructure provided by the NCBIR POIG.02.03.01-24-099/13 grant: GCONiI—Upper-Silesian Center for Scientific Computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Capinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Capinski, M., Polanski, A. (2016). Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics