Advertisement

American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications

  • Kim NelsonEmail author
  • Theodora Retsina
  • Mikhail Iakovlev
  • Adriaan van Heiningen
  • Yulin Deng
  • Jo Anne Shatkin
  • Arie Mulyadi
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)

Abstract

Nanocellulose has proven to be a versatile material with a vast array of potential commercial applications including composites and foams for automotive , aerospace , and building construction , viscosity modifiers for cosmetics and oil drilling fluids , and high performance fillers for paper , packaging , paints , plastics , and cement . In addition to material performance properties like gelation, shear thinning, exceptionally high strength , and light weight , nanocellulose has a strong sustainability profile. Being made from biomass , it is renewable , biodegradable , compostable , and designed for the environment with a sustainable life cycle carbon footprint. American Process Inc.’s (API’s) American Value Added Pulping (AVAP)® technology offers commercial-scale production of nanocellulose with flexibility in final product morphology (rod shaped nanocrystals and fiber shaped nanofibrils) and surface properties (hydrophilic or hydrophobic) to service the wide variety of emerging end-use market segments. The novel hydrophobic lignin -coated variety of AVAP nanocellulose can be incorporated into plastics. This achievement overcomes a well-known barrier to commercial utilization of nanocellulose. AVAP nanocellulose will also be low cost, with commercial selling prices anticipated to be comparable to competing petroleum-based polymers.

Keywords

Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Kraft Pulp Cellulose Nanocrystals Cellulose Nanofibrils 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.J. Moon, S. Beck, A.W. Rudie, Cellulosic nanocrystals—a material with unique properties and many potential applications, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 9–12Google Scholar
  2. 2.
    H. Kangas, Cellulose nanofibrils—a class of materials with unique properties and many potential applications, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA)Google Scholar
  3. 3.
    R.W. Malmsheimer et al., Forest management solutions for mitigating climate change in the United States. J. Forest. 106(3), 115–173 (2008)Google Scholar
  4. 4.
    C. Eberle, S. Ozcan, Nanocellulose reinforced polymers, in Cellulosic Nanomaterials Workshop 2014 (Oak Ridge National Laboratory, Washington, DC)Google Scholar
  5. 5.
    J.A. Shatkin et al., Market projections of cellulose nanomaterial-enabled products—Part 1: applications. Tappi J. 13(5), 9–16 (2014)Google Scholar
  6. 6.
    K. Nelson, T. Retsina, Innovative nanocellulose process breaks the cost barrier. Tappi J. 13(5), 19–23 (2014)Google Scholar
  7. 7.
    P. Gatenholm, Building body parts using nanocellulose, (2010). http://www.nanotech-now.com/news.cgi?story_id=36457. Accessed 20 May 2014
  8. 8.
    Ford develops carbon fibre technology that could deliver more fuel-efficient vehicles. http://corporate.ford.com/news-center/press-releases-detail/pr-ford-develops-carbon-fibre3720. Accessed 22 May 2014, (Press Release) Oct 2012
  9. 9.
    D.M. Fox et al., Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polym. Degrad. Stab. 98(2), 590–596 (2013)CrossRefGoogle Scholar
  10. 10.
    B. Lyne, Market Prospects for NanoCellulose (The Royal Institute of Technology, Alberta Biomaterials Development Centre, Edmunton, AB, Canada, 2013)Google Scholar
  11. 11.
    M. Henriksson et al., Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6), 1579–1585 (2008)CrossRefGoogle Scholar
  12. 12.
    W. Gindl, J. Keckes, All-cellulose nanocomposite. Polymer 46(23), 10221–10225 (2005)CrossRefGoogle Scholar
  13. 13.
    R.J. Moon et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)CrossRefGoogle Scholar
  14. 14.
    I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3), 459–494 (2010)CrossRefGoogle Scholar
  15. 15.
    W. Hamad, On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. Can. J. Chem. Eng. 84(5), 513–519 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Lee, Y. Deng, The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7(13), 6034–6040 (2011)CrossRefGoogle Scholar
  17. 17.
    H.M.C. Azeredo et al., Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 75(1), N1–N7 (2010)CrossRefGoogle Scholar
  18. 18.
    X. Xu et al., Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5(8), 2999–3009 (2013)CrossRefGoogle Scholar
  19. 19.
    E.S. Medeiros et al., Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils. J. Biobased Mater. Bioenergy 2(3), 231–242 (2008)CrossRefGoogle Scholar
  20. 20.
    G. Siqueira, J. Bras, A. Dufresne, Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2), 425–432 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Lönnberg et al., Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl. Mater. Interfaces 3(5), 1426–1433 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Fang et al., Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood. Appl. Surf. Sci. 288, 682–689 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Dufresne, M.N. Belgacem, Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23(3), 277–286 (2013)Google Scholar
  24. 24.
    Y. Xie et al., Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A Appl. Sci. Manuf. 41(7), 806–819 (2010)CrossRefGoogle Scholar
  25. 25.
    S.-Y. Fu et al., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B Eng. 39(6), 933–961 (2008)CrossRefGoogle Scholar
  26. 26.
    S.J. Peters et al., Nanocellulose and microcellulose fibers for concrete. Transp. Res. Rec.: J. Transp. Res. Board 2142(1), 25–28 (2010)CrossRefGoogle Scholar
  27. 27.
    Y.W. Cao, W. Jason, J. Youngblood, R. Moon, P. Zavattieri, Performance-enhanced cementitious materials by cellulose nanocrystal additions, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI press, Peachtree Corners, GA), p. 135–136Google Scholar
  28. 28.
    F. Jiang, Y.-L. Hsieh, Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J. Mater. Chem. A 2(2), 350–359 (2014)CrossRefGoogle Scholar
  29. 29.
    Z. Zhang et al., Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014)CrossRefGoogle Scholar
  30. 30.
    S.T. Nguyen et al., Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf., A 445, 128–134 (2014)CrossRefGoogle Scholar
  31. 31.
    N.T. Cervin et al., Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2), 401–410 (2012)CrossRefGoogle Scholar
  32. 32.
    J.T. Korhonen et al., Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces 3(6), 1813–1816 (2011)CrossRefGoogle Scholar
  33. 33.
    C. Gebald et al., Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 45(20), 9101–9108 (2011)CrossRefGoogle Scholar
  34. 34.
    X. He, et al., Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydr. Polym. (2014)Google Scholar
  35. 35.
    H. Valo et al., Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 50(1), 69–77 (2013)CrossRefGoogle Scholar
  36. 36.
    D.O. Carlsson et al., Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J. Mater. Chem. 22(36), 19014–19024 (2012)CrossRefGoogle Scholar
  37. 37.
    H.-W. Liang et al., Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19 (2012)CrossRefGoogle Scholar
  38. 38.
    FPL, Forest Products Laboratory: Restoring America’s Forests Through the Wise Use of Wood (USDA Forest Products Laboratory, Madison, WI, USA, 2013), p. 13Google Scholar
  39. 39.
    L. Heath, W. Thielemans, Cellulose nanowhisker aerogels. Green Chem. 12(8), 1448–1453 (2010)CrossRefGoogle Scholar
  40. 40.
    N. Lavoine et al., Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90(2), 735–764 (2012)CrossRefGoogle Scholar
  41. 41.
    G. Rodionova et al., Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1), 127–134 (2011)CrossRefGoogle Scholar
  42. 42.
    K. Syverud, P. Stenius, Strength and barrier properties of MFC films. Cellulose 16(1), 75–85 (2009)CrossRefGoogle Scholar
  43. 43.
    C. Aulin, M. Gällstedt, T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3), 559–574 (2010)CrossRefGoogle Scholar
  44. 44.
    W.T. Luu, D.W. Bousfield, J. Kettle, Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing, in 2011 PaperCon Conference 2011, TAPPIGoogle Scholar
  45. 45.
    A. Mautner et al., Nanopapers for organic solvent nanofiltration. Chem. Commun. 50(43), 5778–5781 (2014)CrossRefGoogle Scholar
  46. 46.
    H. Fukuzumi et al., Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14(5), 1705–1709 (2013)CrossRefGoogle Scholar
  47. 47.
    W. Thielemans, C.R. Warbey, D.A. Walsh, Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem. 11(4), 531–537 (2009)CrossRefGoogle Scholar
  48. 48.
    T. Lindström, et al., Microfibrillated cellulose, in Encyclopedia of Polymer Science and Technology (John Wiley & Sons, Inc, 2002)Google Scholar
  49. 49.
    A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. 37, 815–827 (1983)Google Scholar
  50. 50.
    K. Xhanari, K. Syverud, P. Stenius, Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio. J. Dispersion Sci. Technol. 32(3), 447–452 (2011)CrossRefGoogle Scholar
  51. 51.
    A. Lif et al., Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants. J. Colloid Interface Sci. 352(2), 585–592 (2010)CrossRefGoogle Scholar
  52. 52.
    Y. Boluk, L. Zhao, Aircraft anti-icing fluids formulated with nanocrystalline cellulose, Alberta Innovates—Technology Futures (2013)Google Scholar
  53. 53.
    K. Dimic-Misic, P.A.C. Gane, J. Paltakari, Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind. Eng. Chem. Res. 52(45), 16066–16083 (2013)CrossRefGoogle Scholar
  54. 54.
    VTT. Innovation and Competitiveness from Nanocellulose, (2011). http://www.vtt.fi/news/2011/01192011nano.jsp?lang=en. Accessed 21 May 2014
  55. 55.
    J. Moreau, Driving innovation to market. cellulose nanomaterials—a path to commercialization, in Cellulosic Nanomaterials Workshop 2014, CelluForce, Washington, DCGoogle Scholar
  56. 56.
    X. Dong, J.-F. Revol, D. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1), 19–32 (1998)CrossRefGoogle Scholar
  57. 57.
    R.S. Reiner, A.W. Rudie, Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 21–24Google Scholar
  58. 58.
    T. Saito et al., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8), 2485–2491 (2007)CrossRefGoogle Scholar
  59. 59.
    R.S. Reiner, A.W. Rudie, Pilot plant scale-up of TEMPO-pretreated cellulose nanofibrils, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 177–178Google Scholar
  60. 60.
    M. Iakovlev, H. Sixta, A. van Heiningen, SO2-ethanol-water (SEW) pulping: II. Kinetics for spruce, beech, and wheat straw. J. Wood Chem. Technol. 31(3), 250–266 (2011)CrossRefGoogle Scholar
  61. 61.
    M. Iakovlev et al., SO2-ethanol-water (SEW) fractionation of spruce: kinetics and conditions for paper and viscose-grade dissolving pulps. RSC Adv. 4(4), 1938–1950 (2014)CrossRefGoogle Scholar
  62. 62.
    S.F. Primakov, Delignification of various wood species with aqueous-alcoholic solutions. Nauchn. Tr. Vses. Nauchn.-Issled. Inst. Tsellyulozn.-Bumazhn. Prom. 47, 69–75 (1961)Google Scholar
  63. 63.
    R.J. Puumala, Organosolv Pulping and a Preliminary Vapor-liquid Equilibrium Study of a Sulfur Dioxide, Ethanol, Water System (Michigan Technological University, 1991)Google Scholar
  64. 64.
    E. Sklavounos et al., Oil palm empty fruit bunch to biofuels and chemicals via SO2–ethanol–water fractionation and ABE fermentation. Bioresour. Technol. 147, 102–109 (2013)CrossRefGoogle Scholar
  65. 65.
    M. Yamamoto, M. Iakovlev, A. van Heiningen, Total mass balances of SO2-ethanol-water (SEW) fractionation of forest biomass. Holzforschung 65(4), 559–565 (2011)CrossRefGoogle Scholar
  66. 66.
    M. Yamamoto, M. Iakovlev, A. van Heiningen, Kinetics of SO2–ethanol–water (SEW) fractionation of hardwood and softwood biomass. Bioresour. Technol. 155, 307–313 (2014)CrossRefGoogle Scholar
  67. 67.
    T. Retsina, V. Pylkkänen, Back to the biorefinery: a novel approach to boost pulp mill profits, in Paper 3602007. pp. 18–19Google Scholar
  68. 68.
    T. Retsina, V. Pylkkänen, Method for the production of fermentable sugars and cellulose from lignocellulosic material (American Process, Inc, 2011)Google Scholar
  69. 69.
    S.A. Rydholm, Pulping Processes (John Wiley & Sons Inc., London, 1965)Google Scholar
  70. 70.
    S.S. Vishnevskaya, R.K. Boyarskaya, M.N. Tsypkina, Sulfonation and dissolution of lignin in sulfite pulping. 2. Factors determining the dissolution of lignin. Koksnes Kimija 1, 23–28 (1981)Google Scholar
  71. 71.
    M. Iakovlev, A. van Heiningen, Efficient fractionation of spruce by SO2-ethanol-water treatment: closed mass balances for carbohydrates and sulfur. ChemSusChem 5(8), 1625–1637 (2012)Google Scholar
  72. 72.
    M. Iakovlev, A. van Heiningen, Kinetics of fractionation by SO2-ethanol-water (SEW) treatment: understanding the deconstruction of spruce wood chips. RSC Adv. 2(7), 3057–3068 (2012)Google Scholar
  73. 73.
    M. Iakovlev, E. Hiltunen, A. van Heiningen, Paper technical potential of spruce SO2-ethanol-water (SEW) pulp compared to kraft pulp. Nord. Pulp Pap. Res. J. 25(4), 428–433 (2010)CrossRefGoogle Scholar
  74. 74.
    M. Iakovlev et al., SO2–ethanol–water (SEW) fractionation process: production of dissolving pulp from spruce. Cellulose 21(3), 1419–1429 (2014)Google Scholar
  75. 75.
    H. Sixta et al., Novel concepts of dissolving pulp production. Cellulose 20(4), 1547–1561 (2013)CrossRefGoogle Scholar
  76. 76.
    K. Nelson, Low cost co-production of cellulose nanofibrils and/or cellulose nanocrystals with biofuels using the AVAP biorefinery technology, in NWBC 2014—the 5th Nordic Wood Biorefinery Conference, 2014. Stockholm, SwedenGoogle Scholar
  77. 77.
    M. Yamamoto, M. Iakovlev, A. van Heiningen, The effect of chemical and physical characteristics of spruce SEW pulps on enzymatic hydrolysis. Cellulose 21(5), 3395–3407 (2014)CrossRefGoogle Scholar
  78. 78.
    M. Yamamoto et al., Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide–ethanol–water fractionation. Bioresour. Technol. 167, 530–538 (2014)CrossRefGoogle Scholar
  79. 79.
    M. Yamamoto et al., The effect of bark on sulfur dioxide–ethanol–water fractionation and enzymatic hydrolysis of forest biomass. Bioresour. Technol. 167, 390–397 (2014)CrossRefGoogle Scholar
  80. 80.
    E. Sklavounos et al., Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation. Holzforschung 65(4), 551–558 (2011)CrossRefGoogle Scholar
  81. 81.
    E. Sklavounos, M. Iakovlev, A. van Heiningen, Study on conditioning of SO2–ethanol–water spent liquor from spruce chips/softwood biomass for ABE fermentation. Ind. Eng. Chem. Res. 52(11), 4351–4359 (2013)CrossRefGoogle Scholar
  82. 82.
    E. Sklavounos et al., Comparison of two conditioning schemes for detoxifying SO2-ethanol-water hydrolysate from lignocellulosics for ABE fermentation. Nord. Pulp Pap. Res. J. 29(3), 370–382 (2014)CrossRefGoogle Scholar
  83. 83.
    S.A. Survase et al., Continuous acetone–butanol–ethanol fermentation using SO2–ethanol–water spent liquor from spruce. Bioresour. Technol. 102(23), 10996–11002 (2011)CrossRefGoogle Scholar
  84. 84.
    M. Iakovlev, T. Pääkkönen, A. van Heiningen, Kinetics of SO2-ethanol-water pulping of spruce. Holzforschung 63(6), 779–784 (2009)CrossRefGoogle Scholar
  85. 85.
    N.A. Rozenberger, Rapid sulfite pulping. Bumazhnaya Promyshlennost 36(12), 3–7 (1961)Google Scholar
  86. 86.
    D.H. Page, The origin of the differences between sulfite and kraft pulps. Canadian J. Pulp Paper 9(1), 15–20 (1983)Google Scholar
  87. 87.
    L.O. Morales et al., Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2–ethanol–water fractionation. Bioresour. Technol. 161, 55–62 (2014)CrossRefGoogle Scholar
  88. 88.
    J.Y. Zhu, R. Sabo, X. Luo, Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 13(5), 1339–1344 (2011)CrossRefGoogle Scholar
  89. 89.
    K.L. Spence et al., A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4), 1097–1111 (2011)CrossRefGoogle Scholar
  90. 90.
    I.C. Hoeger et al., Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2), 807–818 (2013)CrossRefGoogle Scholar
  91. 91.
    M.A. Hubbe et al., Cellulosic nanocomposites: a review. BioResources 3(3), 929–980 (2008)Google Scholar
  92. 92.
    H. Abdul Khalil, A. Bhat, A. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (2012)Google Scholar
  93. 93.
    K. Missoum, M.N. Belgacem, J. Bras, Nanofibrillated cellulose surface modification: a review. Materials 6(5), 1745–1766 (2013)CrossRefGoogle Scholar
  94. 94.
    D.J. Gardner et al., Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol. 22(5–6), 545–567 (2008)CrossRefGoogle Scholar
  95. 95.
    Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)CrossRefGoogle Scholar
  96. 96.
    S. Rebouillat, F. Pla, State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J. Biomater. Nanobiotechnol. 4(2) (2013)Google Scholar
  97. 97.
    J. Kim et al., Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym. Eng. Sci. 49(10), 2054–2061 (2009)CrossRefGoogle Scholar
  98. 98.
    N. Ljungberg et al., New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5), 2732–2739 (2005)CrossRefGoogle Scholar
  99. 99.
    S. Kalia et al., Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292(1), 5–31 (2014)CrossRefGoogle Scholar
  100. 100.
    M. Jonoobi et al., A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J. Polym. Environ. 20(4), 991–997 (2012)CrossRefGoogle Scholar
  101. 101.
    M. Jonoobi et al., Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2), 299–307 (2010)CrossRefGoogle Scholar
  102. 102.
    N. Lin et al., Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr. Polym. 83(4), 1834–1842 (2011)CrossRefGoogle Scholar
  103. 103.
    L.C. Tome et al., Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem. 13(9), 2464–2470 (2011)CrossRefGoogle Scholar
  104. 104.
    Y. Yoshida, L. Heux, A. Isogai, Heterogeneous reaction between cellulose and alkyl ketene dimer under solvent-free conditions. Cellulose 19(5), 1667–1676 (2012)CrossRefGoogle Scholar
  105. 105.
    M. Granstrom et al., Highly water repellent aerogels based on cellulose stearoyl esters. Polym. Chem. 2(8), 1789–1796 (2011)CrossRefGoogle Scholar
  106. 106.
    G. Rodionova, et al., Surface modification of microfibrillated cellulose films by gas-phase esterification: Improvement of barrier properties, in Proceedings of the 2010 TAPPI International Conference on Nanotechnology for the Forest Product Industry, Espoo, Finland, 2010Google Scholar
  107. 107.
    K. Missoum et al., Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Ind. Crops Prod. 48, 98–105 (2013)CrossRefGoogle Scholar
  108. 108.
    M. Andresen et al., Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6), 665–677 (2006)CrossRefGoogle Scholar
  109. 109.
    J. Lu, P. Askeland, L.T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5), 1285–1296 (2008)CrossRefGoogle Scholar
  110. 110.
    E. Malmström, A. Carlmark, Controlled grafting of cellulose fibres–an outlook beyond paper and cardboard. Polym. Chem. 3(7), 1702–1713 (2012)CrossRefGoogle Scholar
  111. 111.
    D. Roy et al., Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064 (2009)CrossRefGoogle Scholar
  112. 112.
    B. Peng et al., Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 89(5), 1191–1206 (2011)CrossRefGoogle Scholar
  113. 113.
    Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014)CrossRefGoogle Scholar
  114. 114.
    A. Bhattacharya, B. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci. 29(8), 767–814 (2004)CrossRefGoogle Scholar
  115. 115.
    S. Pavlidou, C.D. Papaspyrides, A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008)CrossRefGoogle Scholar
  116. 116.
    G. Gürdağ, S. Sarmad, Cellulose graft copolymers: synthesis, properties, and applications, in Polysaccharide Based Graft Copolymers, ed. by S. Kalia, M.W. Sabaa (Springer Berlin Heidelberg, 2013), pp. 15–57Google Scholar
  117. 117.
    K. Littunen et al., Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr. Polym. 84(3), 1039–1047 (2011)CrossRefGoogle Scholar
  118. 118.
    A. Carlmark, E. Larsson, E. Malmström, Grafting of cellulose by ring-opening polymerisation—a review. Eur. Polymer J. 48(10), 1646–1659 (2012)CrossRefGoogle Scholar
  119. 119.
    M. Barsbay et al., Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20), 7140–7147 (2007)CrossRefGoogle Scholar
  120. 120.
    D. Roy, J.T. Guthrie, S. Perrier, Graft polymerization: grafting poly (styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25), 10363–10372 (2005)CrossRefGoogle Scholar
  121. 121.
    Y. Peng, et al. Drying cellulose nanocrystal suspensions, in International Conference on Nanotechnology for Forest. 2013. Stockholm, SwedenGoogle Scholar
  122. 122.
    Y. Peng, D.J. Gardner, Y. Han, Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1), 91–102 (2012)CrossRefGoogle Scholar
  123. 123.
    Y. Peng et al., Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5), 2379–2392 (2013)CrossRefGoogle Scholar
  124. 124.
    Y. Peng, et al., Drying cellulose nanocrystal suspensions, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 31–34Google Scholar
  125. 125.
    K. Missoum, J. Bras, M.N. Belgacem, Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13(12), 4118–4125 (2012)CrossRefGoogle Scholar
  126. 126.
    W.L.-S. Nieh, et al., Roadmap for the Development of International Standards for Nanocellulose (TAPPI, 2011)Google Scholar
  127. 127.
    K. Nelson, Measurement Needs for Cellulose Nanomaterials (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kim Nelson
    • 1
    Email author
  • Theodora Retsina
    • 1
  • Mikhail Iakovlev
    • 1
  • Adriaan van Heiningen
    • 1
  • Yulin Deng
    • 1
  • Jo Anne Shatkin
    • 1
  • Arie Mulyadi
    • 1
  1. 1.American Process Inc.AtlantaUSA

Personalised recommendations