Advertisement

Dow Chemical: Materials Science Contributions to Membrane Production

  • Abhishek ShrivastavaEmail author
  • Ian A. Tomlinson
  • Abhishek Roy
  • Jon E. Johnson
  • Steven Jons
  • Caleb V. Funk
  • Luke Franklin
  • Martin Peery
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)

Abstract

In this chapter, authors present a review of technical developments in reverse osmosis membranes and module technology and ultrafiltration membranes and module technology. State of the art of these technologies, potential future research opportunities and impact areas are also discussed.

Keywords

Hollow Fiber Reverse Osmosis Water Footprint Feed Water Ultrafiltration Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Service, R.F., Desalination freshens up. Science 313(5790), 1088–1090 (2006)CrossRefGoogle Scholar
  2. 2.
    T. Oki, S. Kanae, Global hydrological cycles and world water resources. Science 313(5790), 1068–1072 (2006)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    UNESCO water facts and figures. [cited 2014 06/11/2014]. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/facts-and-figures/
  5. 5.
    Energy Demands on Water Resources (20060Google Scholar
  6. 6.
    T. Younos, R. Hill, H. Poole, Water dependency of energy production and power generation systems. Water Resour. Impact 14(1), 9–12 (2012)Google Scholar
  7. 7.
    S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Hanlon, R. Madel, K. Olson-Sawyer, K. Rabin, J. Rose, K. Demaline, L. Hatfield, C. Hunt, K. Sweetman, Food, Water Energy. 2013Google Scholar
  9. 9.
    A. Shrivastava, S. Rosenberg, M. Peery, Maximizing seawater reverse osmosis energy efficiency with high permeability membranes and system design, in International Desalination Association World Congress on Desalination and Water Reuse 2013 (IDA, Tianjin, 2013)Google Scholar
  10. 10.
    M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Semiat, Energy issues in desalination processes. Environ. Sci. Technol. 42(22), 8193–8201 (2008)CrossRefGoogle Scholar
  12. 12.
    J.E. Miller, Review of Water Resources and Desalination Technologies (Sandia National Laboratories, Albuquerque, 2003)Google Scholar
  13. 13.
    E.L. Cussler, B.K. Dutta, On separation efficiency. AIChE J. 58(12), 3825–3831 (2012)CrossRefGoogle Scholar
  14. 14.
    C. Liu, K. Rainwater, L. Song, Energy analysis and efficiency assessment of reverse osmosis desalination process. Desalination 276(1–3), 352–358 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Wijmans, R. Baker, The solution-diffusion model: a review. J. Membr. Sci. 107(1), 1–21 (1995)CrossRefGoogle Scholar
  16. 16.
    D.R. Paul, Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 241(2), 371–386 (2004)CrossRefGoogle Scholar
  17. 17.
    N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309, 197–207 (2013)CrossRefGoogle Scholar
  18. 18.
    B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326, 77–95 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Radovanovic, S.W. Thiel, S.-T. Hwang, Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation. J. Membr. Sci. 65(3), 213–229 (1992)CrossRefGoogle Scholar
  20. 20.
    P. Radovanovic, S.W. Thiel, S.-T. Hwang, Formation of asymmetric polysulfone membranes by immersion precipitation. Part II. The effects of casting solution and gelation bath compositions on membrane structure and skin formation. J. Membr. Sci. 65(3), 231–246 (1992)CrossRefGoogle Scholar
  21. 21.
    J.E. Cadotte, M.M.N.U.S., Interfacially synthesized reverse osmosis membrane. US4277344A (1981)Google Scholar
  22. 22.
    J. Wang, D.S. Dlamini, A.K. Mishra, M.T.M. Pendergast, M.C.Y. Wong, B.B. Mamba, V. Freger, A.R.D. Verliefde, E.M.V. Hoek, A critical review of transport through osmotic membranes. J. Membr. Sci. 454, 516–537 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Antony, R. Fudianto, S. Cox, G. Leslie, Assessing the oxidative degradation of polyamide reverse osmosis membrane—accelerated ageing with hypochlorite exposure. J. Membr. Sci. 347(1–2), 159–164 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Glater, S.-K. Hong, M. Elimelech, The search for a chlorine-resistant reverse osmosis membrane. Desalination 95(3), 325–345 (1994)CrossRefGoogle Scholar
  25. 25.
    M.M. Chau, S.D.C.A.U.S., High flux semipermeable membranes. US4950404A (1990)Google Scholar
  26. 26.
    M. Hirose, S.J.P., S.J.P. Ito Hiroki, S.J.P. Tanaka Kazuo, Osmosis membrane. US5989426A (1999)Google Scholar
  27. 27.
    W.E. Mickols, M.M.I.U.S., Method of treating polyamide membranes to increase flux. US5755964A (1998)Google Scholar
  28. 28.
    J.E. Cadotte, M.M.N.U.S., K.G.B., D.R. Walker, Polyamide membranes useful for water softening. US4765897A (1998)Google Scholar
  29. 29.
    W.E. Mickols, C.M.N., Composite membrane and method for making the same. US6337018B1 (2002)Google Scholar
  30. 30.
    S.D. Jons, E.P.M.N.U.S., M.M.I.U.S., K.J. Stutts, M.M.I.U.S., M.S. Ferritto, C.M.N.U.S., W.E. Mickols, Treatment of composite polyamide membranes to improve performance. US5876602A (1999)Google Scholar
  31. 31.
    A.C. Sagle, E.M. Van Wagner, H. Ju, B.D. McCloskey, B.D. Freeman, M.M. Sharma, PEG-coated reverse osmosis membranes: desalination properties and fouling resistance. J. Membr. Sci. 340(1–2), 92–108 (2009)CrossRefGoogle Scholar
  32. 32.
    E.M. Van Wagner, A.C. Sagle, M.M. Sharma, Y.-H. La, B.D. Freeman, Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J. Membr. Sci. 367(1–2), 273–287 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Wu, A.E. Contreras, Q. Li, Studying the impact of RO membrane surface functional groups on alginate fouling in seawater desalination. J. Membr. Sci. 458, 120–127 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Zhao, P.C.Y. Chang, C. Yen, W.S.W. Ho, High-flux and fouling-resistant membranes for brackish water desalination. J. Membr. Sci. 425–426, 1–10 (2013)Google Scholar
  35. 35.
    V. Freger, Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 19(11), 4791–4797 (2003)CrossRefGoogle Scholar
  36. 36.
    M. Elimelech, W.H. Chen, J.J. Waypa, Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination 95(3), 269–286 (1994)CrossRefGoogle Scholar
  37. 37.
    L.A. Perry, O. Coronell, Reliable, bench-top measurements of charge density in the active layers of thin-film composite and nanocomposite membranes using quartz crystal microbalance technology. J. Membr. Sci. 429, 23–33 (2013)CrossRefGoogle Scholar
  38. 38.
    B.X. Mi, O. Coronell, B.J. Marinas, F. Watanabe, D.G. Cahill, I. Petrov, Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry. J. Membr. Sci. 282(1–2), 71–81 (2006)CrossRefGoogle Scholar
  39. 39.
    O. Coronell, X. Zhang, M.I. Gonzalez, D.G. Cahill, B.J. Marinas, Quantification of functional groups in FT30 (RO) membrane and modeling of their acid/base behavior, in Abstracts of Papers, 235th ACS National Meeting, p. ENVR-119, New Orleans, LA, United States, 6–10 Apr 2008Google Scholar
  40. 40.
    O. Coronell, B.X. Mi, B.J. Marinas, D.G. Cahill, Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of Arsenic(III) and potassium iodide. Environ. Sci. Technol. 47(1), 420–428 (2013)CrossRefGoogle Scholar
  41. 41.
    O. Coronell, B.J. Marinas, X.J. Zhang, D.G. Cahill, Quantification of functional groups and modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane. Environ. Sci. Technol. 42(14), 5260–5266 (2008)CrossRefGoogle Scholar
  42. 42.
    O. Coronell, B.J. Marinas, D.G. Cahill, Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes. Environ. Sci. Technol. 45(10), 4513–4520 (2011)CrossRefGoogle Scholar
  43. 43.
    O. Coronell, I. Marinas Benito, G. Cahill David, Accessibility and ion exchange stoichiometry of ionized carboxylic groups in the active layer of FT30 reverse osmosis membrane. Environ. Sci. Technol. 43(13), 5042–5048 (2009)Google Scholar
  44. 44.
    A. Tiraferri, M. Elimelech, Direct quantification of negatively charged functional groups on membrane surfaces. J. Membr. Sci. 389, 499–508 (2012)CrossRefGoogle Scholar
  45. 45.
    J.Y. Chung, J.-H. Lee, K.L. Beers, C.M. Stafford, Stiffness, strength, and ductility of nanoscale thin films and membranes: a combined wrinkling-cracking methodology. Nano Lett. 11(8), 3361–3365 (2011)CrossRefGoogle Scholar
  46. 46.
    V.P. Khare, A.R. Greenberg, W.B. Krantz, Investigation of the viscoelastic and transport properties of interfacially polymerized barrier layers using pendant drop mechanical analysis. J. Appl. Polym. Sci. 94(2), 558–568 (2004)CrossRefGoogle Scholar
  47. 47.
    V.P. Khare, A.R. Greenberg, W.B. Krantz, Development of pendant drop mechanical analysis as a technique for determining the stress-relaxation and water-permeation properties of interfacially polymerized barrier layers. J. Appl. Polym. Sci. 90(10), 2618–2628 (2003)CrossRefGoogle Scholar
  48. 48.
    S.H. Maruf, D.U. Ahn, A.R. Greenberg, Y.F. Ding, Glass transition behaviors of interfacially polymerized polyamide barrier layers on thin film composite membranes via nano-thermal analysis. Polymer 52(12), 2643–2649 (2011)CrossRefGoogle Scholar
  49. 49.
    J. Lee, C.M. Doherty, A.J. Hill, S.E. Kentish, Water vapor sorption and free volume in the aromatic polyamide layer of reverse osmosis membranes. J. Membr. Sci. 425–426, 217–226 (2013)CrossRefGoogle Scholar
  50. 50.
    X. Zhang, D.G. Cahill, O. Coronell, B.J. Mariñas, Absorption of water in the active layer of reverse osmosis membranes. J. Membr. Sci. 331(1–2), 143–151 (2009)CrossRefGoogle Scholar
  51. 51.
    X. Xu, R.J. Kirkpatrick, NaCl interaction with interfacially polymerized polyamide films of reverse osmosis membranes: a solid-state 23Na NMR study. J. Membr. Sci. 280(1–2), 226–233 (2006)CrossRefGoogle Scholar
  52. 52.
    X. Zhang, D.G. Cahill, O. Coronell, B.J. Marinas, Partitioning of salt ions in FT30 reverse osmosis membranes. Appl. Phys. Lett.91(18), 181904/1–181904/3 (2007)Google Scholar
  53. 53.
    V. Freger, S. Bason, Characterization of ion transport in thin films using electrochemical impedance spectroscopy. J. Membr. Sci. 302(1+2), 1–9 (2007)Google Scholar
  54. 54.
    T. Bray Donald, Reverse osmosis purification apparatus. US3417870A (1968)Google Scholar
  55. 55.
    C. Westmoreland Julius, Spirally wrapped reverse osmosis membrane cell. US3367504A (1968)Google Scholar
  56. 56.
    K.V. Larsen, D.K.M.D.K., Permeate tube|permeatrohr|tube de permeat. EP1807179B1 (2011)Google Scholar
  57. 57.
    Y. Uda, O.J.P., O.J.P. H. Toshimitsu, O.J.P. C. Shinichi, Spiral separation membrane element, perforated hollow tube, and method of producing the same. US20130087499A1 (2013)Google Scholar
  58. 58.
    P.T. Goebel, N.H.M.N.U.S., Spiral wound membrane element product water tube with external flow grooves. US8529762B2 (2013)Google Scholar
  59. 59.
    H. Kang Sang, R/O type purifier including in reverse flow preventing function|reverse osmosis-typed water purifier with a backflow preventing function, comprising backflow preventing units installed in water collecting holes of a water collecting pipe|The reverse osmotic pressure type water-cleaner in which the inverse current preventing function is equipped. KR2009056618A (2009)Google Scholar
  60. 60.
    Y. Uda, M. Beppu, S. Jizo, Separation membrane element|Separation-membrane element. JP2010264420A (2010)Google Scholar
  61. 61.
    G.S. Nalle, Jr., Die head for extruding plastic netting and method of extruding such netting. US3067084A (1962)Google Scholar
  62. 62.
    I. Shelby, S.D.C.A.U.S., S.D.C.A.U.S. B.C. Roger, Cross-flow filtration apparatus with biocidal feed spacer. US20090314713A1 (2009)Google Scholar
  63. 63.
    Y. Uda, I.-s.J.P., I.-s.J.P.K. Naoki, I.-s.J.P.Y. Yuuji, I.-s.J.P.M. Kouji, I.-s.J.P.K. Takahisa, Feed side passage material and spiral separation membrane element. US20110168623A1 (2011)Google Scholar
  64. 64.
    Z. Cai, C.N., C.N. S.-M. Liang, C.N. J. Tao, C.N. Y. Jin, C.N. G.-Y. Xu, C.N. Z. Wu, Method for improving anti-pollution performance of reverse osmosis membrane element| A kind of the reverse osmosis membrane element anti-pollution performance of method. CN102941019A (2013)Google Scholar
  65. 65.
    S.Y. Lee, K. Kim Youn, Membrane filter capable of reducing dissolved solid| Membrane filter capable of the removal of a hard material for installing a hardness material eliminating unit| The membrane filter capable of the removal of the harden property material. KR2010109156A (2010)Google Scholar
  66. 66.
    C.U. Hardwicke, S.S.C.U.S., H.T.X.U.S. A.J. Avagliano, C.P.N.Y.U.S. G.R. Chambers, D.N.Y.U.S. S.F. Rutkowski, F.P.A.U.S. E.J. Hall, Reverse osmosis membrane and membrane stack assembly. US20090139650A1 (2009)Google Scholar
  67. 67.
    Y. Tayalia, S.S.G., B.I.N. P.R. Dontula, S.A.Z.U.S. U.J. Bharwada, Feed spacers for spiral wound membrane element. US20130146531A1 (2013)Google Scholar
  68. 68.
    B. Wood, P.K.Y.U.S., Spiral wound filter. US8236177B1 (2012)Google Scholar
  69. 69.
    P.P. Beauchamp, R.N.Y.U.S., L.K.Y.U.S. R. Thiyagarajan, B.I.N. A. Kumar, N.N.Y.U.S. T.A. Anderson, Separation module. US20120103892A1 (2012)Google Scholar
  70. 70.
    A.B. Minick, U.S., U.S. M.F. Buser, Fluid separation system with reduced fouling| Fliud separation system with reduced fouling. CN102333582A (2012)Google Scholar
  71. 71.
    H. Hirozawa, J.P., J.P.M. Koiwa, J.P.H. Yamada, J.P.K. Takagi, J.P.Y. Okamoto, J.P.T. Hamada, J.P.K. Oto, J.P.M. Kimura, Separation membrane and separation membrane element| Membrane de séparation et élément de membrane de séparation. WO2013125505A1 (2013)Google Scholar
  72. 72.
    N. Harada, A. Ko, K. Ishii, O. Hayashi, A. Mizuike, Y. Kawaguchi, Sheet-like separation membrane and separation membrane element| A sheet-like separation membrane and a separation-membrane element. JP2010125418A (2010)Google Scholar
  73. 73.
    N. Harada, A. Ko, Sheet-like composite semi-permeable membrane and manufacturing method therefor| A sheet-like composite semi-permeable membrane and its manufacturing method. JP2010099590A (2010)Google Scholar
  74. 74.
    H. Hirozawa, M. Kimura, Y. Suzuki, K. Takagi, Separation membrane and separation membrane element| A separation membrane and a separation-membrane element. JP2012066239A (2012)Google Scholar
  75. 75.
    M. Koiwa, M. Kimura, K. Takagi, Separation membrane element| Separation-membrane element. JP2012055817A (2012)Google Scholar
  76. 76.
    K. Takagi, S.J.P., S.J.P. M. Kimura, S.J.P. M. Koiwa, S.J.P. H. Hirozawa, Separation membrane element. US20130334128A1 (2013)Google Scholar
  77. 77.
    M. Koiwa, K. Takagi, H. Hirozawa, M. Kimura, Spiral type separation membrane element and method for producing the same| A spiral-type separation-membrane element and its manufacturing method. JP2012139615A (2012)Google Scholar
  78. 78.
    The supply side flow-path material used for a spiral-type separation-membrane element, and its manufacturing method. JP04684783B2 (2011)Google Scholar
  79. 79.
    M. Beppu, Y. Uda, Spiral type separation membrane element| Spiral type|mold separation-membrane element. JP2007209956A (2007)Google Scholar
  80. 80.
    Y. Uda, N. Kurata, Y. Yamashiro, K. Maruyama, T. Konishi, Spiral separating membrane element| Spiral type|mold separation-membrane element. JP2009028714A (2009)Google Scholar
  81. 81.
    M. Beppu, Spiral separation membrane element| Spiral type|mold separation-membrane element. JP2009050759A (2009)Google Scholar
  82. 82.
    S. Jizo, T. Hamada, M. Beppu, Y. Uda, M. Takada, Spiral membrane element| Spiral type|mold film element. JP2009195870A (2009)Google Scholar
  83. 83.
    M. Beppu, O.J.P.O.J.P.S. Chikura, Spiral separation membrane element. US8303815B2 (2012)Google Scholar
  84. 84.
    A.J. Kidwell, M.M.N.U.S., Membrane filtration using low energy feed spacer. US20130341264A1 (2013)Google Scholar
  85. 85.
    K.-K. Tung, J.T.W., J.T.W.Y.-L. Li, T.C.T.W.M.-Y. Lu, T.C.T.W.J.-Y. Lai, Feed spacer for spiral-wound membrane module. US7459082B2 (2008)Google Scholar
  86. 86.
    P.R. Dontula, B.I.N., S.S.G.Y. Tayalia, S.A.Z.U.S.U.J. Bharwada, Feed spacer for spiral wound membrane element. US20130146532A1 (2013)Google Scholar
  87. 87.
    H.-Y. Hong, C.N., C.N.G. Chen, C.N.J.-F. Bao, Coil type membrane component with vertical-horizontal wide flow channels | Roll-type membrane module with vertically and horizontally wide flow channels. CN202151550U (2012)Google Scholar
  88. 88.
    M.K. McCague, E.C.A.U.S., S.D.C.A.U.S.W.G. Light, High density filtration module| Hochdichtes Filtrationsmodul| Module de filtration à haute densité. EP1707254A1 (2006)Google Scholar
  89. 89.
    G. Popa, R.D.E., S.-G.-e.-L.F.R.J. Suidureau, H.D.E.P. Johannsen, K.D.E.G. Reinhold, Spacer for filter modules. US20080290031A1 (2008)Google Scholar
  90. 90.
    A. Zounek, W.D.E., I.-W.D.E.U. Meyer-Blumenroth, Spacer for filtration devices| Abstandshalter für filtrationsvorrichtungen| Espaceur pour dispositifs de filtration. EP2544802A2 (2013)Google Scholar
  91. 91.
    T. Melin Prof. Dr, A.G.V.N.L., A.D.E.C. Bayer, A.D.E.C. Fritzmann, Membrane device with turbulence promoting spacers| Membranvorrichtung mit Abstandshalterelementen zur Strömungsvergleichmäßigung| Dispositif de membrane avec éléments espaceurs pour l’augmentation de la turbulence. EP2143480B1 (2013)Google Scholar
  92. 92.
    O. Tozawa, Spiral type separation membrane element| Spiral type|mold separation-membrane element. JP2006305556A (2006)Google Scholar
  93. 93.
    Spiral-type separation-membrane element. JP04488431B2 (2010)Google Scholar
  94. 94.
    K. Kono, Spiral type liquid separation element| Spiral-type liquid isolation|separation element. JP2010094659A (2010)Google Scholar
  95. 95.
    Y. Odaka, O.J.P., I.-g.J.P.T. Katayama, O.J.P.T. Kitagawa, Liquid separation device, flow channel material and process for producing the same. US8388848B2 (2013)Google Scholar
  96. 96.
    H. Im Ki, Y. Kim Duk, M. Yeo Sang, G.U.N.S. Kim, Tricot permeate channel for reverse osmosis membrane filter| Tricot permeate channel used for a reverse osmosis membrane filter for minimizing generation of harmful components to human body. KR704383B1 (2007)Google Scholar
  97. 97.
    Y. Odaka, J.P., J.P.T. Katayama, J.P.T. Kitagawa, Liquid separation device, flow channel material and process for producing the same| The separation of liquid device, and the fluid path ash and a manufacturing method thereof. KR1353830B1 (2014)Google Scholar
  98. 98.
    H. Ando, T. Katayama, Spiral type fluid separation element and method for manufacturing the same| A spiral-type fluid isolation|separation element and its manufacturing method. JP2013103182A (2013)Google Scholar
  99. 99.
    T. Nishioka, Y. Odaka, Liquid separating element, reverse osmosis apparatus using it and reverse osmosis membrane treatment method| A liquid isolation|separation element and a reverse osmosis equipment using the same, a reverse osmosis membrane processing method. JP2006247453A (2006)Google Scholar
  100. 100.
    K.V. Larsen, S.E., A spacer for membrane modules, a membrane module and uses thereof. CN101128252A (2008)Google Scholar
  101. 101.
    A separation membrane and a separation-membrane element. JP2014064973A (2014)Google Scholar
  102. 102.
    S. Jizo, T. Hamada, M. Beppu, Y. Uda, M. Takada, Spiral membane element| Spiral type|mold film element. JP2009195871A (2009)Google Scholar
  103. 103.
    H. Hirozawa, S.J.P., S.J.P.M. Koiwa, S.J.P.K. Takagi, S.J.P.Y. Okamoto, S.J.P.H. Yamada, S.J.P.Y. Seike, S.J.P.T. Hamada, S.J.P.M. Kimura, Separation membrane, separation membrane element, and method for producing separation membrane| Trennmembran, trennmembranenelement und verfahren zur herstellung der trennmembran| Membrane de séparation, élément de membrane de séparation et procédé de fabrication d’une membrane de séparation. EP2730331A1 (2014)Google Scholar
  104. 104.
    K. Iwai, S. Furuno, Y. Otaka, K. Komori, Separation membrane element, and membrane module| A separation-membrane element and a membrane module. JP2013208519A (2013)Google Scholar
  105. 105.
    Y. Okamoto, J.P., J.P.M. Koiwa, J.P.H. Yamada, J.P.K. Takagi, J.P.H. Hirozawa, J.P.T. Hamada, J.P.M. Kimura, Separation membrane element | Elément de membrane de séparation. WO2014003170A1 (2014)Google Scholar
  106. 106.
    K. Takagi, J.P., J.P.M. Kimura, J.P.M. Koiwa, J.P.H. Yamada, J.P.H. Hirozawa, Separation membrane and separation membrane element| Membrane de séparation et élément de membrane de séparation. WO2014021133A1 (2014)Google Scholar
  107. 107.
    Y. Jung, D.O.O., P.Y.O.S. Hong, S. Im Hee, Y. Koo Ja, Antimicrobial tricot permeate channel, manufacturing method thereof and spiral wound membrane module using the same| Antimicrobial tricot permeate channel made of sterilizer containing sheath-core type complex fiber, a manufacturing method of the same, a spirally wound membrane module including the same| The antibiotic tricote permeated water fluid path, and the manufacturing method thereof and spiral wound membrane module including the same. KR2012137890A (2012)Google Scholar
  108. 108.
    S.-Y. Lee, S.K.R., S.K.R.D.-W. Han, S.K.R.Y.-K. Kim, S.K.R.H.-J. Ahn, S.K.R.E.-J. Moon, S.K.R.S.-Y. Lee, Spiral wound type filter cartridge. US8506807B2 (2013)Google Scholar
  109. 109.
    P.R. Dontula, B.I.N., S.S.G.Y. Tayalia, S.A.Z.U.S.U.J. Bharwada, B.I.N.J.S. Radhakrishnan, B.I.N.M. Patnam, Spiral wound membrane element and permeate carrier. US20130098829A1 (2013)Google Scholar
  110. 110.
    A. van der Padt, A.N.L., B.N.L.T. Jongsma, Spiral wound filter assembly. US20100326910A1 (2010)Google Scholar
  111. 111.
    J.A. Bair, C.N.Y.U.S., H.N.Y.U.S.T.J. Fendya, I.N.Y.U.S.M.F. Hurwitz, T.N.Y.U.S.T. ul Haq, C.N.Y.U.S.S.A. Geibel, Fluid treatment arrangements and methods. US8043512B2 (2011)Google Scholar
  112. 112.
    K. Saito, T.J.P., T.J.P.T. Sano, Spiral-type filtration module, and liquid treatment method and device employing the same. US20120318736A1 (2012)Google Scholar
  113. 113.
    W. Graham, G.s.B.Z.A., Flow distributor plate for the treatment of water by reverse osmosis. US8715500B2 (2014)Google Scholar
  114. 114.
    S. Chikura, J.P., J.P.Y. Uda, J.P.T. Hamada, End member for spiral separation membrane element, spiral separation membrane element and separation membrane module | The part for the spiral separation film element, and the spiral separation film element and separating film module. KR2014047149A (2014)Google Scholar
  115. 115.
    Spiral-type fluid isolation|separation element. JP05181917B2 (2013)Google Scholar
  116. 116.
    A spiral-type film|membrane element and a spiral type membrane module. JP05179230B2 (2013)Google Scholar
  117. 117.
    M. Beppu, I.J.P., I.J.P.Y. Uda, I.J.P.S. Chikura, K.J.P.K. Yamamoto, Spiral membrane module. US8034241B2 (2011)Google Scholar
  118. 118.
    Y. Uda, T. Hamada, M. Beppu, S. Chikura, N. Tahara, M. Takata, Separation membrane element and separation membrane module using the same| Separation film element and separating film module using the same. KR1290463B1 (2013)Google Scholar
  119. 119.
    D.M. Colby, M.M.A.U.S., E.C.A.U.S.F.K. Lesan, S.D.C.A.U.S.A.M. Franks, C.M.A.U.S.C.-L. Hsieh, T.O.K.U.S.A.K. Mukherjee, Filtration element and method of constructing a filtration assembly. US7387731B2 (2008)Google Scholar
  120. 120.
    Y. Uda, T. Hamada, S. Jizo, M. Beppu, H. Yamane, M. Takada, K. Yoshida, Spiral membrane module| Spiral type membrane module. JP2012066184A (2012)Google Scholar
  121. 121.
    D. Bonta, S.P.M.N.U.S., M.M.I.U.S.M.M. Hoagland, End cap assembly adapted for interconnecting filtration elements. US8425773B2 (2013)Google Scholar
  122. 122.
    Y. Kim, J.A.E., H. Ryu Sang, H.W.A.S. Hwang, I.L.S. Lee, P.Y.O.S. Hong, Y. Koo Ja, Connecting assemblies for a filtering module capable of rapidly separating and combining a filtering module by mounting a pair of connecting assemblies at both end parts of the filtering module| The connecting assembly for the filtration module. KR1273573B1 (2013)Google Scholar
  123. 123.
    Y. Tayalia, S.S.G., B.I.N.P.R. Dontula, S.A.Z.U.S.U.J. Bharwada, Interconnector for filtration apparatus with reduced permeate pressure loss. US20120228208A1 (2012)Google Scholar
  124. 124.
    Y.-Z. Hou, C.N., C.N.S.-Y. Li, Reverse osmosis membrane element center pipe connector| Connector for central tube of the reverse osmosis membrane element. CN201079733Y (2008)Google Scholar
  125. 125.
    Spiral type|mold membrane module. JP04152246B2 (2008)Google Scholar
  126. 126.
    Y. Odaka, H. Matsumoto, H. Kanamori, Spiral type fluid separation element| Spiral type|mold fluid isolation|separation element. JP2009189947A (2009)Google Scholar
  127. 127.
    H. Ando, T. Katayama, Telescope prevention plate and spiral type fluid separating element| A telescope prevention plate and a spiral-type fluid isolation|separation element. JP2013208522A (2013)Google Scholar
  128. 128.
    M. Beppu, I.-s.J.P., I.-s.J.P.T. Hamada, Edge member for membrane element and membrane element equipped with same. US20120037562A1 (2012)Google Scholar
  129. 129.
    M. Beppu, J.P., J.P.T. Hamada, Edge member for film element and film element equipped with same | The end member for the film element and the film element equipped with this. KR1308837B1 (2013)Google Scholar
  130. 130.
    A. Katayama, T. Katayama, T. Seki, Fluid separation element and fluid separation apparatus | A fluid isolation|separation element and a fluid separation apparatus. JP2011152538A (2011)Google Scholar
  131. 131.
    C.J. Elwell, E.C.C.A.U.S., E.C.A.U.S.F.K. Lesan, S.A.U.V. Verbeek, S.M.C.A.U.S.P.J. Metcalfe, Radial split ring seal for filtration systems. US8728213B2 (2014)Google Scholar
  132. 132.
    F.K. Lesan, U.S., U.S.N. Kordani, Seal plate for membrane separation device| Plaque d’étanchéité pour dispositif de séparation membranaire. WO2013033616A1 (2013)Google Scholar
  133. 133.
    I. Shelby, S.D.C.A.U.S., S.D.C.A.U.S.C.R. Bartels, V.C.A.U.S.D. Dewinter, Brine seal for a filtration device. US8388842B2 (2013)Google Scholar
  134. 134.
    M. Taniguchi, J.P.J.P.T. Maeda, Separation membrane module and replacement method for separation membrane element| Module membrane de séparation et procédé de remplacement d’un élément de membrane de séparation. WO2013129283A1 (2013)Google Scholar
  135. 135.
    D.B. Weber, M.G.M.N.U.S., S.V.C.A.U.S.K.J. Knebel , Energy saving spiral element. US20090200237A1 (2009)Google Scholar
  136. 136.
    J.E. Johnson, U.S., U.S.M.D. Mittag, Spiral wound element and seal assembly | Élément en spirale et ensemble joint d’étanchéité. WO2013015971A1 (2013)Google Scholar
  137. 137.
    A. Hiro, I.J.P., I.J.P.H. Fujioka, I.J.P.A. Koumoto, Spiral reverse osmosis membrane element, method of manufacturing the same, and its use method. US8608964B2 (2013)Google Scholar
  138. 138.
    S. De La Cruz, V.C.A.U.S., Blister protection for spiral wound elements. US7303675B2 (2007)Google Scholar
  139. 139.
    M. Beppu, A spiral-type film|membrane element and its manufacturing method. JP04936435B2 (2012)Google Scholar
  140. 140.
    T. Okuno, T. Ogurisu, T. Hashimoto, Spiral pattern membrane element and its manufacturing method| A spiral type|mold film element and a method of manufacturing the same. JP2006247629A (2006)Google Scholar
  141. 141.
    K. Higashi, T. Katayama, A. Ogiwara, Spiral type fluid separation element| Spiral-type fluid isolation|separation element. JP2012176345A (2012)Google Scholar
  142. 142.
    A.O. Larson, R.M.N.U.S., E.P.M.N.U.S.S.D. Jons, L.M.I.U.S.P.I. Moody, Insertion-point seal for spiral wound module. US8142657B2 (2012)Google Scholar
  143. 143.
    H. Inoue, Spiral type membrane module. JP04704791B2 (2012)Google Scholar
  144. 144.
    K. Ishii, A spiral-type separation-membrane element and its manufacturing method. JP04485410B2 (2010)Google Scholar
  145. 145.
    D.D. Marschke, M.M.N.U.S., Reinforcement element. US20130161253A1 (2013)Google Scholar
  146. 146.
    S. Chikura, A spiral-type film|membrane element and its manufacturing method. JP05204994B2 (2013)Google Scholar
  147. 147.
    S. Chikura, I.J.P., I.J.P.K. Ishii, I.J.P.H. Matsuda, I.J.P.M. Beppu, I.J.P.H. Fujioka, I.J.P.Y. Uda, Spiral membrane element and process for producing the same. US7998348B2 (2011)Google Scholar
  148. 148.
    R.P. McCollam, R.M.N.U.S., Method for applying tape layer to outer periphery of spiral wound module. US8142588B2 (2012)Google Scholar
  149. 149.
    Q. Wang, C.N., C.N.Y. Hou, C.N.S. Li, Process for manufacturing spirally wound reverse osmosis membrane element| Procédé pour la fabrication de module membranaire d’osmose inverse spiralé. WO2014012519A1 (2014)Google Scholar
  150. 150.
    M.D. Huschke, E.P.M.N., L.E.M.N.G.W. Peterson, B.M.N.M.S. Koreltz, fluid filter assemblies with integral fluid seals. US6299772B1 (2001)Google Scholar
  151. 151.
    K. Buecher, W.D., I.D.B.U. Meyer, B.C.D.K. Noll, N.D.T. Reus, Membrane element and process for its production. US20020070158A1 (2002)Google Scholar
  152. 152.
    K. Ishii, O.J.P., O.J.P.S. Chikura, O.J.P.H. Matsuda, O.J.P.M. Beppu, O.J.P.H. Fujioka, O.J.P.Y. Uda, Spiral membrane element. US20090065426A1 (2009)Google Scholar
  153. 153.
    P.H. Knappe, S.B.C.A.U.S., V.C.A.U.S.M. Tanner, Sanitary spiral wound filtration cartridge. US8668828B2 (2014)Google Scholar
  154. 154.
    P.H. Knappe, S.B.C.A.U.S., V.C.A.U.S.D.F. Quigg, G.C.A.U.S.R.P. Magnani, Sanitary rigid shell spiral wound element. US5985146A (1999)Google Scholar
  155. 155.
    D.D. Marschke, E.P.M.N.U.S., Axial bypass sleeve. US20130161257A1 (2013)Google Scholar
  156. 156.
    D.D. Marschke, M.M.N.U.S., C.M.N.U.S.M.J. Madsen, Sanitary brine seal. US20130161258A1 (2013)Google Scholar
  157. 157.
    J.H. Moon, D.K.R., D.K.R.S.K. Kim, G.-d.K.R.K.S. Park, G.-d.K.R.S.H. Ryu, Tubular molded body capable of full-wrapping membrane module and industrial filter assembly using the same. US20120223007A1 (2012)Google Scholar
  158. 158.
    T.I. Yun, Performance and economic evaluation of a 16-inch-diameter reverse osmosis membrane for surface water desalting, in AWWA Membrane Conference 2001Google Scholar
  159. 159.
    C., B., B.R., H.M.J., H.L., K.P., J. Lozier, M.P., P.M., , S.I, Industry consortium analysis of large reverse osmosis and nanofiltration element diameters. Desalination and Water Purification (2004)Google Scholar
  160. 160.
    Y. Hou, S.C.N., Spiral wound reverse osmosis membrane element. US8337698B2 (2012)Google Scholar
  161. 161.
    P.R. Dontula, B.I.N., S.S.G.Y. Tayalia, S.A.Z.U.S.U.J. Bharwada, System and process for treating water and spiral wound membrane element. US20130146540A1 (2013)Google Scholar
  162. 162.
    Y. Hou, S.C.N., S.C.N.Q. Wang, Reverse osmosis membrane element. US20140042080A1 (2014)Google Scholar
  163. 163.
    C.R. Bartels, U.S., U.S.C.M. Cummings, U.S.A.M. Franks, High flow high recovery spirally wound filtration element|element de filtration enroule en spirale a recuperation elevee et a haut debit. WO2000027511A1 (2000)Google Scholar
  164. 164.
    K. Shimizu, Spiral type membrane module. JP05136738B2 (2013)Google Scholar
  165. 165.
    M. Hirota, The operating method of a membrane separator.JP03900623B2 (2007)Google Scholar
  166. 166.
    Y. Nishida, S. Ishihara, Spiral separation membrane element| Spiral type|mold separation-membrane element. JP2005305324A (2005)Google Scholar
  167. 167.
    S.D. Jons, E.P.M.N.U.S., L.M.N.U.S.A.R. Marsh Iii, Spiral wound module including membrane sheet with regions having different permeabilities. US8496825B1 (2013)Google Scholar
  168. 168.
    T. Onishi, Separation membrane element|Separation-membrane element. JP2013202445A (2013)Google Scholar
  169. 169.
    A.R. Marsh, E.P.M.N.U.S., B.M.N.U.S.R. Schaffenberg, E.P.M.N.U.S.S.D. Jons, M.M.I.U.S.R.A. Davis, Package assembly for piperazine-based membranes. US7156997B2 (2007)Google Scholar
  170. 170.
    T. Uete, S. Goto, Spiral-type separation membrane element and production method and administration method for separation membrane module| The manufacturing method and the management method of a spiral type| Mold separation-membrane element and a separation-membrane module. JP2009119333A (2009)Google Scholar
  171. 171.
    N. Ikeyama, O.C.A.U.S.S.D.C.A.U.S.M. Wilf, Filtration devices with embedded radio frequency identification (RFID) tags. US7481917B2 (2009)Google Scholar
  172. 172.
    N. Ikeyama, O.J.P.S.D.C.A.U.S.M. Wilf, Reverse osmosis filtration devices with RFID tag-powered flow and conductivity meters. US8617397B2 (2013)Google Scholar
  173. 173.
    K. Kobayashi, O.J.P., O.J.P.T. Konishi , O.J.P.M. Kobuke, Separation membrane module and coupling member. US20140027370A1 (2014)Google Scholar
  174. 174.
    T. Konishi, O.J.P., O.J.P.K. Kobayashi, O.J.P.M. Kobuke, Separation membrane module. US20130334124A1 (2013)Google Scholar
  175. 175.
    T. Konishi, O.J.P., O.J.P.K. Maruyama, O.J.P.T. Kouno, O.J.P.K. Hirano, O.J.P.A. Ootani, O.J.P.H. Yoshikawa, O.J.P.N. Ikeyama, Spiral type membrane filtering device and mounting member, and membrane filtering device managing system and membrane filtering device managing method using the same. US20110114561A1 (2011)Google Scholar
  176. 176.
    B. Liberman, T.A.I.L., K.S.I.L.M. Faigon, H.I.L.Y. Pinhas, T.A.I.L.M. Ilevicky-Ozel, Z.I.L.Y. Ben-Yaish, E.H.I.L.E. Reuveni, Desalination system and elements thereof. US8480894B2 (2013)Google Scholar
  177. 177.
    G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011)CrossRefGoogle Scholar
  178. 178.
    J. Xu, Z.-L. Xu, Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent. J. Membr. Sci. 208, 203–212 (2002)CrossRefGoogle Scholar
  179. 179.
    K. Nouzaki, M. Nagata, J. Arai, Y. Idemoto, N. Koura, H. Yanagishita, H. Negishi, D. Kitamoto, T. Ikegami, K. Haraya, Preparation of polyacrylonitrile ultrafiltration membranes for wastewater treatment. Desalination 144, 53–59 (2002)CrossRefGoogle Scholar
  180. 180.
    Y. Lin, Y. Tang, H. Ma, J. Yang, Y. Tian, W. Ma, X. Wang, Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation. J. Appl. Polym. Sci. 114, 1523–1528 (2009)CrossRefGoogle Scholar
  181. 181.
    G.-L. Ji, C.-H. Du, B.-K. Zhu, Y.-Y. Xu, Preparation of Porous PVDF membrane via thermally induced phase separation with diluent mixture of DBP and DEHP. J. Appl. Polym. Sci. 105, 1496–1502 (2007)CrossRefGoogle Scholar
  182. 182.
    D. Vial, G. Doussau, The use of microfiltration membranes for seawater pre-treatment prior to reverse osmosis membranes. Desalination 153(1–3), 141–147 (2003)CrossRefGoogle Scholar
  183. 183.
    S.F.E. Boerlage, M.D. Kennedy, M.R. Dickson, D.E.Y. El-Hodali, J.C. Schippers, The modified fouling index using ultrafiltration membranes (MFI-UF): characterisation, filtration mechanisms and proposed reference membrane. J. Membr. Sci. 197(1–2), 1–21 (2002)CrossRefGoogle Scholar
  184. 184.
    J. Lowe, M.M. Hossain, Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination 218(1–3), 343–354 (2008)CrossRefGoogle Scholar
  185. 185.
    C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73, 259–275 (1992)CrossRefGoogle Scholar
  186. 186.
    S.A. McKelvey, W.J. Koros, Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes. J. Membr. Sci. 112, 29–39 (1996)CrossRefGoogle Scholar
  187. 187.
    S. Mal, A. Nandi, Gelation mechanism of thermoreversible Poly(vinylidene fluoride) gels in glyceryl tributyrate. Polymer 30, 6301–6307 (1998)CrossRefGoogle Scholar
  188. 188.
    S. Mal, P. Maiti, A. Nandi, On the gelation rates of thermoreversible Poly(vinylidene fluoride) gels. Macromolecules 28, 2371–2376 (1995)CrossRefGoogle Scholar
  189. 189.
    A. Akthakul, W.F. McDonald, A.M. Mayes, Noncircular pores on the surface of asymmetric polymer membranes: evidence of pore formation via spinodal demixing. J. Membr. Sci. 208, 147–155 (2002)CrossRefGoogle Scholar
  190. 190.
    M. Cheryan, Ultrafiltration Handbook (Technomic Publishing Co. Inc, Lancaster, 1986)Google Scholar
  191. 191.
    M.D. Kennedy, J. Kamanyi, S.G.S. Rodríguez, N.H. Lee, J.C. Schippers, G. Amy, Water treatment by microfiltration and ultrafiltration, in Advanced Membrane Technology and Applications (Wiley, New York, 2008), pp. 131–170Google Scholar
  192. 192.
    N. Kubota, T. Hashimoto, Y. Mori, Microfiltration and Ultrafiltration, in Advanced Membrane Technology and Applications (Wiley, New York, 2008), pp. 101–129Google Scholar
  193. 193.
    L.J. Zeman, A.L. Zydney, Microfiltration and Ultrafiltration: Principles and Applications (Marcel Dekker, Inc, New York, 1996)Google Scholar
  194. 194.
    Z.F. Cui, S. Chang, A.G. Fane, The use of gas bubbling to enhance membrane processes. J. Membr. Sci. 221(1–2), 1–35 (2003)CrossRefGoogle Scholar
  195. 195.
    R. Ghosh, Enhancement of membrane permeability by gas-sparging in submerged hollow fibre ultrafiltration of macromolecular solutions: role of module design. J. Membr. Sci. 274(1–2), 73–82 (2006)CrossRefGoogle Scholar
  196. 196.
    A.G. Fane, C.J.D. Fell, A review of fouling and fouling control in ultrafiltration. Desalination 62, 117–136 (1987)CrossRefGoogle Scholar
  197. 197.
    W. Gao, H. Liang, J. Ma, M. Han, Z.-L. Chen, Z.-S. Han, G.-B. Li, Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination 272(1–3), 1–8 (2011)CrossRefGoogle Scholar
  198. 198.
    N. Hilal, O.O. Ogunbiyi, N.J. Miles, R. Nigmatullin, Methods employed for control of fouling in MF and UF membranes: a comprehensive review. Sep. Sci. Technol. 40(10), 1957–2005 (2005)CrossRefGoogle Scholar
  199. 199.
    S.S. Sablani, M.F.A. Goosen, R. Al-Belushi, M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141(3), 269–289 (2001)CrossRefGoogle Scholar
  200. 200.
    H.M. Yeh, H.P. Wu, J.F. Dong, Effects of design and operating parameters on the declination of permeate flux for membrane ultrafiltration along hollow-fiber modules. J. Membr. Sci. 213(1–2), 33–44 (2003)CrossRefGoogle Scholar
  201. 201.
    S. Chang, A.G. Fane, The effect of fibre diameter on filtration and flux distribution—relevance to submerged hollow fibre modules. J. Membr. Sci. 184(2), 221–231 (2001)CrossRefGoogle Scholar
  202. 202.
    S. Yoon, H. Kim, I. Yeom, Optimization model of submerged hollow fiber membrane modules. J. Membr. Sci. 234(1–2), 147–156 (2004)CrossRefGoogle Scholar
  203. 203.
    S.T. Burr, M.M.I.U.S., M.M.I.U.S.M.D. Mittag, L.M.I.U.S.M.J. Turpin, W.M.I.U.S.D.D. Vogel, Fluid filter module including handle. US8261919B2 (2012)Google Scholar
  204. 204.
    S.T. Burr, M.M.I.U.S., M.M.N.U.S.M.J. Hallan, M.M.I.U.S.M.D. Mittag, L.M.I.U.S.M.J. Turpin, W.M.I.U.S.G.D. Vogel, Fluid filter module including sealed boss. US8173018B2 (2012)Google Scholar
  205. 205.
    F. Liu, N.A. Hashim, Y. Lui, M.R.M. Abed, K. Lin, Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 1–27 (2011)CrossRefGoogle Scholar
  206. 206.
    C. Serra, M.J. Clifton, P. Moulin, J.-C. Rouch, P. Aptel, Dead-end ultrafiltration in hollow fiber modules: module design and process simulation. J. Membr. Sci. 145(2), 159–172 (1998)CrossRefGoogle Scholar
  207. 207.
    K. Gethard, O. Sae-Khow, S. Mitra, Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Appl. Mater. Interfaces 3(2), 110–114 (2011)CrossRefGoogle Scholar
  208. 208.
    W.-F. Chan, H.-Y. Chen, A. Surapathi, M.G. Taylor, X. Shao, E. Marand, J.K. Johnson, Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7(6), 5308–5319 (2013)CrossRefGoogle Scholar
  209. 209.
    P.S. Goh, A.F. Ismail, B.C. Ng, Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308, 2–14 (2013)CrossRefGoogle Scholar
  210. 210.
    A.T. Nasrabadi, M. Foroutan, Ion-separation and water-purification using single-walled carbon nanotube electrodes. Desalination 277(1–3), 236–243 (2011)CrossRefGoogle Scholar
  211. 211.
    D. Konatham, J. Yu, T.A. Ho, A. Striolo, Simulation insights for graphene-based water desalination membranes. Langmuir 29(38), 11884–11897 (2013)CrossRefGoogle Scholar
  212. 212.
    E.N. Wang, R. Karnik, Water desalination: graphene cleans up water. Nat Nano 7(9), 552–554 (2012)CrossRefGoogle Scholar
  213. 213.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452(7185), 301–310 (2008)CrossRefGoogle Scholar
  214. 214.
    X. Li, R. Wang, F. Wicaksana, C. Tang, J. Torres, A.G. Fane, Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. J. Membr. Sci. 450, 181–188 (2014)CrossRefGoogle Scholar
  215. 215.
    H.L. Wang, T.-S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, H.H.P. Duong, F. Fu, H. Seah, J. Yang, M. Hong, Mechanically robust and highly permeable Aquaporin Z biomimetic membranes. J. Membr. Sci. 434, 130–136 (2013)CrossRefGoogle Scholar
  216. 216.
    Y. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. Helix-Nielsen, R. Wang, X. Hu, A.G. Fane, C.Y. Tang, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci. 423–424, 422–428 (2012)CrossRefGoogle Scholar
  217. 217.
    M. Kumar, W. Meier, J. Zilles, Aquaporin based triblock copolymer membranes for water purification. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 52(2), 1060–1061 (2011)Google Scholar
  218. 218.
    W. Choi, J. Choi, J. Bang, J.-H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interfaces 5(23), 12510–12519 (2013)CrossRefGoogle Scholar
  219. 219.
    A.K. Mishra, S. Ramaprabhu, Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282, 39–45 (2011)CrossRefGoogle Scholar
  220. 220.
    J.-G. Gai, X.-L. Gong, W.-W. Wang, X. Zhang, W.-L. Kang, An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. A 2(11), 4023–4028 (2014)CrossRefGoogle Scholar
  221. 221.
    D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett. 12(7), 3602–3608 (2012)CrossRefGoogle Scholar
  222. 222.
    E.N. Wang, R. Karnik, Water desalination: graphene cleans up water. Nat. Nanotechnol. 7(9), 552–554 (2012)CrossRefGoogle Scholar
  223. 223.
    S.A. Avlonitis, K. Kouroumbas, N. Vlachakis, Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination 157(1–3), 151–158 (2003)CrossRefGoogle Scholar
  224. 224.
    G.-D. Kang, Y.-M. Cao, Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res. 46(3), 584–600 (2012)CrossRefGoogle Scholar
  225. 225.
    S. Lee, J. Cho, M. Elimelech, Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes. Desalination 160(1), 1–12 (2004)CrossRefGoogle Scholar
  226. 226.
    D.C. Sioutopoulos, A.J. Karabelas, Correlation of organic fouling resistances in RO and UF membrane filtration under constant flux and constant pressure. J. Membr. Sci. 407–408, 34–46 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Abhishek Shrivastava
    • 1
    Email author
  • Ian A. Tomlinson
    • 2
  • Abhishek Roy
    • 3
  • Jon E. Johnson
    • 3
  • Steven Jons
    • 3
  • Caleb V. Funk
    • 3
  • Luke Franklin
    • 3
  • Martin Peery
    • 3
  1. 1.Dow Energy and Water SolutionsThe Dow Chemical CompanyMenlo ParkUSA
  2. 2.Dow Energy and Water SolutionsThe Dow Chemical CompanyMidlandUSA
  3. 3.Dow Energy and Water SolutionsThe Dow Chemical CompanyMinneapolisUSA

Personalised recommendations