Skip to main content

Catalytic Materials: Nanofibers—From Research to Manufacture

  • Chapter
  • First Online:
  • 1947 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 224))

Abstract

Graphene nanofibers are materials that display extraordinary properties suitable for a number of advanced energy storage devices as well as chemical processes. These solids offer the most direct route for the manufacture of bulk quantities of high quality graphene . The cost of producing these materials on a commercial scale presents a major challenge, which we have sought to overcome via the use of natural gas as a source of carbon. The key breakthrough in the process has been the design of a catalyst system that is capable of generating high purity graphene nanofibers and hydrogen in a very efficient manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Tammann (1932) Lehrbuch der Metallkunde : Chemie u. Physik d. Metalle u. ihrer Legierungen [Textbook of Physical Metallurgy: Chemistry and Physics and metals and their alloys] (in German). Leipzig: L. Voss. Retrieved 2010-09-12

    Google Scholar 

  2. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, C60: a new form of carbon. Nature 347(6291), 354–358 (1990)

    Article  Google Scholar 

  3. R.E. Smalley, Process for making fullerenes by the laser evaporation of carbon. US Patent 5,300,203 (1994)

    Google Scholar 

  4. T. Baird, J.R. Fryer, B. Grant, Structure of fibrous carbon, pp. 329–330 (1971)

    Google Scholar 

  5. N.M. Rodriguez, A review of catalytically grown carbon nanofibers. J. Mater. Res. 8(12), 3233–3250 (1993)

    Article  Google Scholar 

  6. N.M. Rodriguez, A. Chambers, R.T.K. Baker, Catalytic engineering of carbon nanostructures. Langmuir 11(10), 3862–3866 (1995)

    Article  Google Scholar 

  7. O.C. Carneiro, M.S. Kim, J.B. Yim, N.M. Rodriguez, R.T.K. Baker, Growth of graphite nanofibers from the iron-copper catalyzed decomposition of CO/H2 mixtures. J. Phys. Chem. B 107(18), 4237–4244 (2003)

    Article  Google Scholar 

  8. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51–62 (1972)

    Article  Google Scholar 

  9. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)

    Article  Google Scholar 

  10. N. Krishnankutty, N.M. Rodriguez, R.T.K. Baker, Effect of copper on the decomposition of ethylene over an iron. J. Catal. 158(1), 217–227 (1996)

    Article  Google Scholar 

  11. N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catal. Today 37(3), 295–307 (1997)

    Article  Google Scholar 

  12. H. Wang, R.T.K. Baker, Decomposition of methane over a Ni-Cu-MgO to produce hydrogen and carbon nanofibers. J. Phys. Chem. B 108(52), 20273–20277 (2004)

    Article  Google Scholar 

  13. D.W. Goodman, R.D. Kelley, T.E. Madey, J.T. Yates Jr, Kinetics of the hydrogenation of CO over a single crystal nickel. J. Catal. 63(1), 226–234 (1980)

    Article  Google Scholar 

  14. H. Murayama, T. Maeda, A novel form of filamentous graphite 345, 791–793 (1990)

    Google Scholar 

  15. G.R. Hennig, Electron microscopy of reactivity changes near lattice defects in graphite. Chem. Phys. Carbon 2, 1–49 (1966)

    Google Scholar 

  16. R.T.K. Baker, In situ electron microscopy studies of particle behavior. Cataly. Rev. Sci. Eng. 19(2), 161–209 (1979)

    Google Scholar 

  17. S. Park, R.S. Ruoff, Chemical methods for the production of s. Nat. Nanotechnol. 4(4), 217–224 (2009)

    Article  Google Scholar 

  18. T. Tomai, Y. Kawaguchi, I. Honma, Production from platelet carbon nanofiber by supercritical exfoliation. Appl. Phys. Lett. 100, 233110–233114 (2012)

    Article  Google Scholar 

  19. F. Cavani, F. Trifiro, Alternative processes for the production of styrene. Appl. Catal. A 133(2), 219–239 (1995)

    Article  Google Scholar 

  20. G.C. Grunewald, R.S. Drago, Oxidative dehydrogenation of ethylbenzene to styrene over carbon-based catalysts. J. Mol. Catal. 58(2), 227–233 (1990)

    Article  Google Scholar 

  21. G. Mestl, N.I. Maksimova, N. Keller, V.V. Roddatis, R. Schlögl, Carbon nanofilaments in heterogeneous catalysis: an industrial application for new carbon materials? Angew. Chem. Int. Ed. 40(11), 2066–2068 (2001)

    Article  Google Scholar 

  22. C. Park, R.T.K. Baker, Catalytic behavior of graphite nanofiber supported nickel particles. 3. the effect of chemical blocking on the performance of the system. J. Phys. Chem. B 103(13), 2453–2459 (1999)

    Article  Google Scholar 

  23. V.B. Fenelonov, L.B. Avdeeva, O.V. Goncharova, L.G. Okkel, P.A. Simonov, A.Y. Derevyankin, V.A. Likholobov, Catalytic filamentous carbon as adsorbent and support. Stud. Surf. Sci. Catal. 91, 825–832 (1995)

    Article  Google Scholar 

  24. C. Pham-Huu, N. Keller, G. Ehret, L.J. Charbonniere, R. Ziessel, M.J. Ledoux, Carbon nanofiber supported palladium for liquid-phase reactions: an active and selective for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. J. Mol. Catal. A: Chem. 170(1), 155–163 (2001)

    Google Scholar 

  25. T.G. Ros, D.E. Keller, A.J. Van Dillen, J.W. Geus, D.C. Koningsberger, Preparation and activity of small rhodium metal particles on fishbone carbon nanofibres. J. Catal. 211(1), 85–102 (2002)

    Article  Google Scholar 

  26. Z. Paal, D. Teschner, N.M. Rodriguez, R.T.K. Baker, L. Toth, U. Wild, R. Schlögl, Rh/GNF catalysts: characterization and catalytic performance in methylcyclopentane reactions. Catal. Today 102, 254–258 (2005)

    Article  Google Scholar 

  27. J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236), 590–593 (1995)

    Article  Google Scholar 

  28. T. Iijima, K. Suzuki, Y. Matsuda, Electrodic characteristics of various carbon materials for lithium rechargeable batteries. Synth. Met. 73(1), 9–20 (1995)

    Article  Google Scholar 

  29. K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, A mechanism of lithium storage in disordered carbons. Science 264(5158), 556–558 (1994)

    Article  Google Scholar 

  30. R. Fong, U. von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137(7), 2009–2013 (1990)

    Article  Google Scholar 

  31. B.D. McNicol, D.A.J. Rand, K.R. Williams, Direct methanol–air fuel cells for road transportation. J. Power Sources 83(1), 15–31 (1999)

    Article  Google Scholar 

  32. L.J. Blomen, M.N. Mugerwa (eds.) Fuel cell systems (Springer, 1993)

    Google Scholar 

  33. H.A. Gasteiger, N.M. Markovic, P.N. Ross Jr, Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface. J. Phys. Chem. 99(22), 8945–8949 (1995)

    Article  Google Scholar 

  34. A.K. Shukla, M. Neergat, P. Bera, V. Jayaram, M.S. Hegde, An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. J. Electroanal. Chem. 504(1), 111–119 (2001)

    Article  Google Scholar 

  35. C.A. Bessel, K. Laubernds, N.M. Rodriguez, R.T.K. Baker, Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B 105(6), 1115–1118 (2001)

    Article  Google Scholar 

  36. E.S. Steigerwalt, G.A. Deluga, D.E. Cliffel, C.M. Lukehart, A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode. J. Phys. Chem. B 105(34), 8097–8101 (2001)

    Article  Google Scholar 

  37. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, Q. Xin, Carbon nanotubes as support for cathode of a direct methanol fuel cell. Carbon40(5), 791–794 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly M. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodriguez, N.M., Baker, R.T.K. (2016). Catalytic Materials: Nanofibers—From Research to Manufacture. In: Madsen, L., Svedberg, E. (eds) Materials Research for Manufacturing. Springer Series in Materials Science, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-23419-9_7

Download citation

Publish with us

Policies and ethics