Catalytic Materials: Nanofibers—From Research to Manufacture

  • Nelly M. RodriguezEmail author
  • R. Terry K. Baker
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)


Graphene nanofibers are materials that display extraordinary properties suitable for a number of advanced energy storage devices as well as chemical processes. These solids offer the most direct route for the manufacture of bulk quantities of high quality graphene . The cost of producing these materials on a commercial scale presents a major challenge, which we have sought to overcome via the use of natural gas as a source of carbon. The key breakthrough in the process has been the design of a catalyst system that is capable of generating high purity graphene nanofibers and hydrogen in a very efficient manner.


Oxygen Reduction Reaction Ethyl Benzene Propylene Carbonate Propylene Carbonate Ethylene Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Tammann (1932) Lehrbuch der Metallkunde : Chemie u. Physik d. Metalle u. ihrer Legierungen [Textbook of Physical Metallurgy: Chemistry and Physics and metals and their alloys] (in German). Leipzig: L. Voss. Retrieved 2010-09-12Google Scholar
  2. 2.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, C60: a new form of carbon. Nature 347(6291), 354–358 (1990)CrossRefGoogle Scholar
  3. 3.
    R.E. Smalley, Process for making fullerenes by the laser evaporation of carbon. US Patent 5,300,203 (1994)Google Scholar
  4. 4.
    T. Baird, J.R. Fryer, B. Grant, Structure of fibrous carbon, pp. 329–330 (1971)Google Scholar
  5. 5.
    N.M. Rodriguez, A review of catalytically grown carbon nanofibers. J. Mater. Res. 8(12), 3233–3250 (1993)CrossRefGoogle Scholar
  6. 6.
    N.M. Rodriguez, A. Chambers, R.T.K. Baker, Catalytic engineering of carbon nanostructures. Langmuir 11(10), 3862–3866 (1995)CrossRefGoogle Scholar
  7. 7.
    O.C. Carneiro, M.S. Kim, J.B. Yim, N.M. Rodriguez, R.T.K. Baker, Growth of graphite nanofibers from the iron-copper catalyzed decomposition of CO/H2 mixtures. J. Phys. Chem. B 107(18), 4237–4244 (2003)CrossRefGoogle Scholar
  8. 8.
    R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51–62 (1972)CrossRefGoogle Scholar
  9. 9.
    R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)CrossRefGoogle Scholar
  10. 10.
    N. Krishnankutty, N.M. Rodriguez, R.T.K. Baker, Effect of copper on the decomposition of ethylene over an iron. J. Catal. 158(1), 217–227 (1996)CrossRefGoogle Scholar
  11. 11.
    N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catal. Today 37(3), 295–307 (1997)CrossRefGoogle Scholar
  12. 12.
    H. Wang, R.T.K. Baker, Decomposition of methane over a Ni-Cu-MgO to produce hydrogen and carbon nanofibers. J. Phys. Chem. B 108(52), 20273–20277 (2004)CrossRefGoogle Scholar
  13. 13.
    D.W. Goodman, R.D. Kelley, T.E. Madey, J.T. Yates Jr, Kinetics of the hydrogenation of CO over a single crystal nickel. J. Catal. 63(1), 226–234 (1980)CrossRefGoogle Scholar
  14. 14.
    H. Murayama, T. Maeda, A novel form of filamentous graphite 345, 791–793 (1990)Google Scholar
  15. 15.
    G.R. Hennig, Electron microscopy of reactivity changes near lattice defects in graphite. Chem. Phys. Carbon 2, 1–49 (1966)Google Scholar
  16. 16.
    R.T.K. Baker, In situ electron microscopy studies of particle behavior. Cataly. Rev. Sci. Eng. 19(2), 161–209 (1979)Google Scholar
  17. 17.
    S. Park, R.S. Ruoff, Chemical methods for the production of s. Nat. Nanotechnol. 4(4), 217–224 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Tomai, Y. Kawaguchi, I. Honma, Production from platelet carbon nanofiber by supercritical exfoliation. Appl. Phys. Lett. 100, 233110–233114 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Cavani, F. Trifiro, Alternative processes for the production of styrene. Appl. Catal. A 133(2), 219–239 (1995)CrossRefGoogle Scholar
  20. 20.
    G.C. Grunewald, R.S. Drago, Oxidative dehydrogenation of ethylbenzene to styrene over carbon-based catalysts. J. Mol. Catal. 58(2), 227–233 (1990)CrossRefGoogle Scholar
  21. 21.
    G. Mestl, N.I. Maksimova, N. Keller, V.V. Roddatis, R. Schlögl, Carbon nanofilaments in heterogeneous catalysis: an industrial application for new carbon materials? Angew. Chem. Int. Ed. 40(11), 2066–2068 (2001)CrossRefGoogle Scholar
  22. 22.
    C. Park, R.T.K. Baker, Catalytic behavior of graphite nanofiber supported nickel particles. 3. the effect of chemical blocking on the performance of the system. J. Phys. Chem. B 103(13), 2453–2459 (1999)CrossRefGoogle Scholar
  23. 23.
    V.B. Fenelonov, L.B. Avdeeva, O.V. Goncharova, L.G. Okkel, P.A. Simonov, A.Y. Derevyankin, V.A. Likholobov, Catalytic filamentous carbon as adsorbent and support. Stud. Surf. Sci. Catal. 91, 825–832 (1995)CrossRefGoogle Scholar
  24. 24.
    C. Pham-Huu, N. Keller, G. Ehret, L.J. Charbonniere, R. Ziessel, M.J. Ledoux, Carbon nanofiber supported palladium for liquid-phase reactions: an active and selective for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. J. Mol. Catal. A: Chem. 170(1), 155–163 (2001)Google Scholar
  25. 25.
    T.G. Ros, D.E. Keller, A.J. Van Dillen, J.W. Geus, D.C. Koningsberger, Preparation and activity of small rhodium metal particles on fishbone carbon nanofibres. J. Catal. 211(1), 85–102 (2002)CrossRefGoogle Scholar
  26. 26.
    Z. Paal, D. Teschner, N.M. Rodriguez, R.T.K. Baker, L. Toth, U. Wild, R. Schlögl, Rh/GNF catalysts: characterization and catalytic performance in methylcyclopentane reactions. Catal. Today 102, 254–258 (2005)CrossRefGoogle Scholar
  27. 27.
    J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236), 590–593 (1995)CrossRefGoogle Scholar
  28. 28.
    T. Iijima, K. Suzuki, Y. Matsuda, Electrodic characteristics of various carbon materials for lithium rechargeable batteries. Synth. Met. 73(1), 9–20 (1995)CrossRefGoogle Scholar
  29. 29.
    K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, A mechanism of lithium storage in disordered carbons. Science 264(5158), 556–558 (1994)CrossRefGoogle Scholar
  30. 30.
    R. Fong, U. von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137(7), 2009–2013 (1990)CrossRefGoogle Scholar
  31. 31.
    B.D. McNicol, D.A.J. Rand, K.R. Williams, Direct methanol–air fuel cells for road transportation. J. Power Sources 83(1), 15–31 (1999)CrossRefGoogle Scholar
  32. 32.
    L.J. Blomen, M.N. Mugerwa (eds.) Fuel cell systems (Springer, 1993)Google Scholar
  33. 33.
    H.A. Gasteiger, N.M. Markovic, P.N. Ross Jr, Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface. J. Phys. Chem. 99(22), 8945–8949 (1995)CrossRefGoogle Scholar
  34. 34.
    A.K. Shukla, M. Neergat, P. Bera, V. Jayaram, M.S. Hegde, An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. J. Electroanal. Chem. 504(1), 111–119 (2001)CrossRefGoogle Scholar
  35. 35.
    C.A. Bessel, K. Laubernds, N.M. Rodriguez, R.T.K. Baker, Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B 105(6), 1115–1118 (2001)CrossRefGoogle Scholar
  36. 36.
    E.S. Steigerwalt, G.A. Deluga, D.E. Cliffel, C.M. Lukehart, A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode. J. Phys. Chem. B 105(34), 8097–8101 (2001)CrossRefGoogle Scholar
  37. 37.
    W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, Q. Xin, Carbon nanotubes as support for cathode of a direct methanol fuel cell. Carbon40(5), 791–794 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Catalytic MaterialsPittsboroUSA

Personalised recommendations