Skip to main content

American Superconductor: Second Generation Superconductor Wire—From Research to Power Grid Applications

  • Chapter
  • First Online:
Materials Research for Manufacturing

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 224))

Abstract

American Superconductor Corporation (AMSC) is the leader the development, manufacturing and deployment of high temperature superconducting (HTS) wire. The company’s HTS wire, called Amperium HTS wire, is the result of decades of a research and development effort on texturing of metals, epitaxial growth of complex oxides and innovative roll-to-roll manufacturing techniques. AMSC is also a leader in developing HTS wire based products that are being deployed in the power grid around the world. In this chapter we provide an overview of the high temperature superconducting materials, describe the challenges overcome in converting these materials into useful wires and summarize the major markets for the Amperium wire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.W. Rupich, E.E. Hellstrom, Bi-Ca-Sr-Cu-O HTS Wire, in 100 Years of Superconductivity, eds. by H. Rogalla, P.H Kes (CRC Press, Boca Raton, 2012), Chap. 11.4

    Google Scholar 

  2. http://ir.amsc.com/releasedetail.cfm?ReleaseID=725019

  3. http://ir.amsc.com/releasedetail.cfm?ReleaseID=736299

  4. S.H. Sohn, J.H. Lim, B.M. Yang, S.K. Lee, H.M. Jang, Y.H. Kim, H.S. Yang, D.L. Kim, H.R. Kim, Y.J. Won, S.D. Hwang, Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea. Physica C: Superconduct. 470, 1567 (2010)

    Article  Google Scholar 

  5. C. Ryu, H. Jang, C. Choi, Y. Kim, H. Kim, Current status of demonstration and commercialization of HTS cable system in grid in Korea, in Proceedings of 2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Beijing, China, 25–27 Oct 2013, ID3231, p. 539

    Google Scholar 

  6. http://www.lscns.com/pr/news_read.asp?idx=2953&pageno=1&kType=&kWord

  7. S. Jin, R.C. Sherwood, R.B. van Dover, T.H. Tiefel, D.W. Johnson Jr, High T C superconductors-composite wire fabrication. Appl. Phys. Lett. 51, 203 (1987)

    Article  Google Scholar 

  8. Superconductivity: Is the Party Over? Science, 244, 914 (1989)

    Google Scholar 

  9. http://www.nytimes.com/1989/06/06/us/superconductors-showing-a-flaw-that-dims-hope.html

  10. T. Hikata, K. Sato, H. Hitotsuyanagi, Ag-sheathed Bi-Pb-Sr-Ca-Cu-O superconducting wires with high critical current density. Jpn. J. Appl. Phys. L28, 82 (1989)

    Article  Google Scholar 

  11. L.N. Bulaevskii, J.R. Clem, L.I. Glazman, A.P. Malozemoff, Model for the low-temperature transport of Bi- based high-temperature superconducting tapes. Phys. Rev. B 45, 2545 (1992)

    Google Scholar 

  12. L.N. Bulaevskii, L.L. Daemen, M.P. Maley, J.Y. Coulter, Limits to the critical current in high-Tc superconducting tapes. Phys. Rev. B 48, 13798 (1993)

    Article  Google Scholar 

  13. K. Sato, Bismuth-based oxide (BSCCO) high-temperature superconducting wires for power grid applications: properties and fabrication, in Superconductors in the Power Grid, ed. by C. Rey (Elsevier, Amsterdam, 2015), Chap. 3

    Google Scholar 

  14. S.L. Cooper, K.E. Gray, in Physical Properties of High Temperature Superconductors, ed. by D.M. Ginsberg (World Scientific, Singapore, 1994), vol. IV, p. 61

    Google Scholar 

  15. Y. Jia, U. Welp, G.W. Crabtree, W.K. Kwok, A.P. Malozemoff, M.W. Rupich, S. Fleshler, J.R. Clem, Microstructure dependence of the c-axis critical current density in second-generation YBCO tapes. J. Appl. Phys. 110(8), 083923 (2011)

    Article  Google Scholar 

  16. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  17. D. Dimos, P. Chaudhari, J. Mannhart, Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. Phys. Rev. B 41, 4038 (1990)

    Article  Google Scholar 

  18. H. Hilgenkamp, J. Mannhart, Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485 (2002)

    Article  Google Scholar 

  19. Y. Iijima, N. Tanabe, Y. Ikeno, O. Kohno, Biaxially aligned YBa2Cu3O7−x thin film tapes. Physica C: Superconduct. 185, 1959 (1991)

    Article  Google Scholar 

  20. Y. Iijima, N. Tanabe, O. Kohno, Y. Ikeno, In-plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1992)

    Article  Google Scholar 

  21. Y. Iijima, K. Kakimoto, M. Kimura, K. Takeda, T. Saitoh, Reel to reel continuous formation of Y-123 coated conductors by IBAD and PLD method. IEEE Trans. Appl. Superconduct. 11, 2816 (2001)

    Article  Google Scholar 

  22. M.W. Rupich, Second-generation (2G) coated high-temperature superconducting cables and wires for power grid applications, in Superconductors in the Power Grid, ed. by C. Rey (Elsevier, Amsterdam, 2015), Chap. 4

    Google Scholar 

  23. D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List, Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): an approach to superconducting tapes with high critical current density. Science 274, 755 (1996)

    Article  Google Scholar 

  24. E.D. Specht, A. Goyal, D.F. Lee, F.A. List, D.M. Kroeger, M. Paranthaman, R.K. Williams, D.K. Christen, Cube-textured nickel substrates for high-temperature superconductors. Superconduct. Sci. Technol. 11, 945 (1998)

    Article  Google Scholar 

  25. M.P. Goyal, U. Schoop, The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552 (2004)

    Google Scholar 

  26. P.N. Ardent, S.R. Foltyn, Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bull. 29, 543 (2004)

    Article  Google Scholar 

  27. Y. Iijima, K. Kakimoto, Y. Yamada, T. Izumi, T. Saitoh, Y. Shiohara, Research and development of biaxially textured IBAD-GZO templates for coated superconductors. MRS Bull. 29, 564 (2004)

    Article  Google Scholar 

  28. T. Kato, Y. Iijima, T. Muroga, T. Saitoh, T. Hirayama, I. Hirabayashi, Y. Yamada, T. Izumi, Y. Shiohara, Y. Ikuhara, TEM observations of Gd2Zr2O7 films formed by the ion-beam-assisted deposition method on an Ni-based alloy. Physica C: Superconduct. 392–396, 790 (2003)

    Article  Google Scholar 

  29. C.P. Wang, K.B. Do, M.R. Beasley, T.H. Geballe, R.H. Hammond, Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia. Appl. Phys. Lett. 71, 2955 (1997)

    Article  Google Scholar 

  30. X. Xiong, S. Kim, K. Zdun, S. Sambandam, A. Rar, K.P. Lenseth, V. Selvamanickam, Progress in high throughput processing of long-length, high quality, and low cost IBAD MgO buffer tapes at SuperPower. IEEE Trans. Appl. Superconduct. 19, 3319 (2009)

    Article  Google Scholar 

  31. K.P. Ko, H.S. Ha, H.K. Kim, K.K. Yu, R.K. Ko, S.H. Moon, S.S. Oh, C. Park, S.I. Yoo, Fabrication of highly textured IBAD-MgO template by continuous reel-to-reel process and its characterization. Physica C: Superconduct. 463–465, 564 (2007)

    Article  Google Scholar 

  32. S. Hanyu, C. Tashita, T. Hayashida, Y. Hanada, K. Morita, Y. Sutoh, N. Nakamura, H. Kutami, M. Igarashi, K. Kakimoto, Y. Iijima, T. Saitoh, Long-length IBAD-MgO buffer layers for high performance RE-123 coated conductors by a large ion beam source. Physica C: Superconduct. 470, 1227 (2010)

    Article  Google Scholar 

  33. M. Paranthaman, T. Aytug, D.K. Christen, P.N. Arendt, S.R. Foltyn, J.R. Groves, L. Stan, R.F. DePaula, H. Wang, T.G. Holesinger, Growth of thick YBa2Cu3O7−δ films carrying a critical current of over 230 A/cm on single LaMnO3-buffered ion-beam assisted deposition MgO substrates. J. Mater. Res. 18, 2055 (2003)

    Article  Google Scholar 

  34. K. Hasegawa, K. Fujino, H. Mukai, M. Konishi, K. Hayashi, K. Sato, S. Honjo, Y. Sato, H. Ishii, Y. Iwata, Biaxially aligned YBCO film tapes fabricated by all pulsed laser deposition. Appl. Superconduct. 4, 487 (1996)

    Article  Google Scholar 

  35. M. Dürrschnabel, Z. Aabdin, V. Große, M. Bauer, G. Sigl, W. Prusseit, O. Eibl, Growth of biaxially-textured MgO buffer layers by inclined substrate deposition. Phys. Procedia 36, 1546 (2012)

    Article  Google Scholar 

  36. M. Bauer, R. Metzger, R. Semerad, P. Berberich, H. Kinder, Inclined substrate deposition by evaporation of magnesium oxide for coated conductors. MRS Proc. 585, 35 (1999)

    Article  Google Scholar 

  37. N.M. Strickland, N.J. Long, E.F. Talantsev, P. Hoefakker, J.A. Xia, M.W. Rupich, W. Zhang, X. Li, T. Kodenkandath, Y. Huang, Nanoparticle additions for enhanced flux pinning in YBCO HTS films. Current Appl. Phys. 8, 372 (2008)

    Article  Google Scholar 

  38. Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M.P. Paranthaman, T. Aytug, A, Goyal, D. Lee, Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Appl. Phys. Lett. 94, 062513 (2009)

    Google Scholar 

  39. R.J. Gupta, E.I. Cooper, E.A. Giess, J.I. Landman, B.W. Hussey, Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077 (1988)

    Google Scholar 

  40. P.C. McIntyre, M.J. Cima, M.F. Ng, Metalorganic deposition of high-Jc Ba2YCu3O7−x thin films from trifluoroacetate precursors onto (100) SrTiO3. J. Appl. Phys. 68, 4183 (1990)

    Article  Google Scholar 

  41. M.W. Rupich, D.T. Verebelyi, W. Zhang, T. Kodenkandath, X. Li, Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29, 572 (2004)

    Article  Google Scholar 

  42. P.C. McIntyre, M.J. Cima, Heteroepitaxial growth of chemically derived ex situ Ba2YCu3O7−x thin films. J. Mater. Res. 9, 2219 (1994)

    Article  Google Scholar 

  43. M. Yoshizumi, T. Nakanishi, J. Matsuda, K. Nakaoka, Y. Sutoh, T. Izumi, Y. Shiohara, Crystal growth of YBCO coated conductors by TFA–MOD method. Physica C: Superconduct. 468, 1531 (2008)

    Article  Google Scholar 

  44. X. Obradors, T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, X. Granados, Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions. Superconduct. Sci. Technol. 25, 123001 (2012)

    Article  Google Scholar 

  45. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51, 619 (1987)

    Article  Google Scholar 

  46. S.R. Foltyn, H. Wang, L. Civale, Q.X. Jia, P.N. Arendt, B. Maiorov, Y. Li, M.P. Maley, J.L. MacManus-Driscoll, Overcoming the barrier to 1000 A∕cm width superconducting coatings. Appl. Phys. Lett. 87, 162505 (2005)

    Article  Google Scholar 

  47. H.M. Manasevit, Single-crystal Gallium Arsenide on insulating substrates. Appl. Phys. Lett. 12, 156 (1968)

    Article  Google Scholar 

  48. V. Selvamanickam, G. Carota, M. Funk, N. Vo, P. Haldar, U. Balachandran, M. Chudzik, P. Arendt, J.R. Groves, R. DePaula, B. Newnam, High-current Y–Ba–Cu–O coated conductor using metal organic chemical-vapor deposition and ion-beam-assisted deposition. IEEE Trans. Appl. Superconduct. 19, 3379 (2001)

    Article  Google Scholar 

  49. P. Berberich, B. Utz, W. Prusseit, H. Kinder, Homogeneous high quality YBa2Cu3O7 films on 3″ and 4″ substrates. Physica C: Superconduct. 219, 497 (1994)

    Article  Google Scholar 

  50. S.S. Oh, H.S. Ha, H.S. Kim, R.K. Ko, K.J. Song, D.W. Ha, T.H. Kim, N.J. Lee, D. Youm, J.S. Yang, H.K. Kim, K.K. Yu, S.H. Moon, K.P. Ko, S.I. Yoo, Development of long-length SmBCO coated conductors using a batch-type reactive co-evaporation method. Superconduct. Sci. Technol. 21, 034003 (2008)

    Article  Google Scholar 

  51. T. Ohnishi, J.-U. Huh, R.H. Hammond, W. Jo, High rate in situ YBa2Cu3O7 film growth assisted by liquid phase. J. Mater. Res. 19, 977 (2004)

    Article  Google Scholar 

  52. J.L. MacManus-Driscoll, A. Kursumovic, B. Maiorov, L. Civale, Q.X. Jia, S.R. Foltyn, H. Wang, YBa2Cu3O7 Coated conductor grown by hybrid liquid phase epitaxy. IEEE Trans. Appl. Superconduct. 17, 2537 (2007)

    Article  Google Scholar 

  53. S.H. Moon, Recent progress of 2G superconducting wire at SuNAM. Presentation at the International Workshop on coated Conductors for Applications 2014, Jeju, Korea, 2 Dec 2014

    Google Scholar 

  54. M.W. Rupich, X. Li, S. Sathyamurthy, C.L.H. Thieme, K. DeMoranville, J. Gannon, S. Fleshler, Second generation wire development at AMSC. IEEE Trans. Appl. Superconduct. 23, 6601205 (2013)

    Article  Google Scholar 

  55. X. Li, M.W. Rupich, C.L.H. Thieme, M. Teplitsky, D. Buczek, E. Siegal, D. Tucker, J. Schreiber, K. DeMoranville, J. Inch, R. Savoy, S. Fleshler, The development of second generation HTS wire at American superconductor. IEEE Trans. Appl. Superconduct. 19, 3231 (2009)

    Article  Google Scholar 

  56. J.B. Goyal, D.M. Kroeger, D. Norton, E.D. Specht, D.K. Christen, Preparing biaxially textured metal alloy article; superconductors, United States Patent No. 5,741,377 (1998)

    Google Scholar 

  57. V. Goler, G. Sachs, Walz und Rekristallizationstextur regular-flachenzentrierter Metalle III, IV. Z. Angew. Phys. 59, 477 (1929)

    Google Scholar 

  58. P.C.J. Gallagher, The influence of alloying, temperature and related effects on the stacking fault energy. Met. Trans. 1, 2429 (1970)

    Google Scholar 

  59. S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, Z.K. Liu, Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys: Condens. Matter 24, 505403 (2012)

    Google Scholar 

  60. R.M. Bozorth, Ferromagnetism (D. van Nostrand, New York, 1951)

    Google Scholar 

  61. R. Huhne, J. Eickemeyer, V.S. Sarma, A. Guth, T. Thersleff, J. Freudenberger, O. de Haas, M. Weigand, J.H. Durrell, L. Schultz, B. Holzapfel, Application of textured highly alloyed Ni–W tapes for preparing coated conductor architectures. Superconduct. Sci. Technol. 23, 034015 (2010)

    Article  Google Scholar 

  62. L. Delannay, Observation and modelling of grain interactions and grain subdivision in rolled cubic polycrystals. Ph.D. Thesis, Catholic University, Leuven, May 2001

    Google Scholar 

  63. F.J. Humphreys, M. Hatherley, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), Chap. 12

    Google Scholar 

  64. D.M. Feldmann, T.G. Holesinger, R. Feenstra, C. Cantoni, W. Zhang, X. Li, M. Rupich, A. Malozemoff, A. Gurevich, D.C. Larbalestier, Grain orientations and grain boundary networks of YBa2Cu3O7−δ films deposited by metalorganic and pulsed laser deposition on biaxially textured Ni–W substrates. J. Mater. Res. 21, 923 (2006)

    Article  Google Scholar 

  65. J.M.S. Skakle, Crystal chemical substitutions and doping of Yba2Cu3Ox and related superconductors. Mater. Sci. Eng. R23, 1 (1998)

    Article  Google Scholar 

  66. G.D.P. Norton, J.D. Budai, M. Paranthaman, E D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E. Hartfield, V.K. Sikka, High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3O x thick films on biaxially textured metals. Appl. Phys. Lett. 69, 1795 (1996)

    Google Scholar 

  67. Q. He, D.K. Christen, J.D. Budai, E.D. Specht, D.F. Lee, A. Goyal, D.P. Norton, M. Paranthaman, F.A. List, D.M. Kroeger, Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes: new substrates for high-current, high-temperature superconductors. Physica C: Superconduct. 275, 155 (1997)

    Article  Google Scholar 

  68. M. Paranthaman, D.F. Lee, A. Goyal, E.D. Specht, P.M. Martin, X. Cui, J.E. Mathis, R. Feenstra, D.K. Christen, D.M. Kroeger, Growth of biaxially textured RE2O3 buffer layers on rolled-Ni substrates using reactive evaporation for HTS-coated conductors. Superconduct. Sci. Tech. 12, 319 (1999)

    Article  Google Scholar 

  69. M.N. Molodyk, S. Street, L. Castellani, A. Ignatiev, All-MOCVD technology for coated conductor fabrication. IEEE Trans. Appl. Superconduct. 21, 3175 (2011)

    Google Scholar 

  70. F.A List, A. Goyal, M. Paranthaman, D.P Norton, E.D Specht, D.F Lee, D.M Kroeger, High Jc YBCO films on biaxially textured Ni with oxide buffer layers deposited using electron beam evaporation and sputtering. Physica C: Superconduct. 302, 87 (1998)

    Google Scholar 

  71. D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List, Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): an approach to superconducting tapes with high critical current density. Science 274, 755 (1996)

    Article  Google Scholar 

  72. T. Aytug, M. Paranthaman, B.W. Kang, S. Sathyamurthy, A. Goyal, D.K. Christen, La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7−δ coated conductors. Appl. Phys. Lett. 79, 2205 (2001)

    Article  Google Scholar 

  73. T. Aytug, J.Z. Wu, C. Cantoni, D.T. Verebelyi, E.D. Specht, M. Paranthaman, D.P. Norton, D.K. Christen, R.E. Ericson, C.L. Thomas, Growth and superconducting properties of YBa2Cu3O7−δ films on conductive SrRuO3 and LaNiO3 multilayers for coated conductor applications. Appl. Phys. Lett. 76, 760 (2000)

    Article  Google Scholar 

  74. S. Sathyamurthy, M. Paranthaman, H.Y. Zhai, S. Kang, T. Aytug, C. Cantoni, K.J. Leonard, E.A. Payzant, H.M. Christen, A. Goyal, X. Li, U. Schoop, T. Kodenkandath, M.W. Rupich, Chemical solution deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. J. Mater. Res. 19, 2117 (2004)

    Article  Google Scholar 

  75. K. Knoth, R. Hühne, S. Oswald, L. Schultz, B. Holzapfel, Highly textured La2Zr2O7 buffer layers for YBCO-coated conductors prepared by chemical solution deposition. Superconduct. Sci. Tech. 18, 334 (2005)

    Article  Google Scholar 

  76. C. Cantoni, D.K. Christen, R. Feenstra, A. Goyal, G.W. Ownby, D.M. Zehner, D.P. Norton, Reflection high-energy electron diffraction studies of epitaxial oxide seed-layer growth on rolling-assisted biaxially textured substrate Ni(001): The role of surface structure and chemistry. Appl. Phys. Lett. 79, 3077 (2001)

    Article  Google Scholar 

  77. C. Cantoni, D.K. Christen, D.K. Heatherly, M.M. Kowalewski, F.A. List, A. Goyal, G. Ownby, D.M. Zehner, B.W. Kang, D.M. Kroeger, Quantification and control of the sulfur c (2 × 2) superstructure on {100}〈100〉 Ni for optimization of YSZ, CeO2 and SrTiO3 seed layers texture. J. Mat. Res. 17, 2549 (2002)

    Article  Google Scholar 

  78. C. Cantoni, D.K. Christen, A. Goyal, L. Heatherly, F.A. List, G.W. Ownby, D.M. Zehner, H.M. Christen, C.M. Rouleau, Growth of oxide seed layers on Ni and other technologically interesting metal substrates: issues related to formation and control of sulfur superstructures for texture optimization. IEEE Trans. Appl. Superconduct. 13, 2646 (2003)

    Article  Google Scholar 

  79. Y. Tokunaga, T. Honjo, T. Izumi, Y. Shiohara, Y. Iijima, T. Saitoh, T. Goto, A. Yoshinaka, A. Yajima, Advanced TFA-MOD process of high critical current YBCO films for coated conductors. Cyrogenics 44, 817 (2004)

    Article  Google Scholar 

  80. H. Fuji, R. Teranishi, Y. Kito, J. Matsuda, K. Nakaoka, T. Izum, Y. Shiohara, Y. Yamada, A. Yajima, T. Saitoh, Progress on TFA-MOD coated conductor development. Physica C: Superconduct. 426–431, 938 (2005)

    Article  Google Scholar 

  81. K. Tada, J. Yoshida, N. Mori, K. Yamada, R. Teranishi, M. Mukaida, T. Kiss, M. Inoue, Y. Shiohara, T. Izumi, J. Matsuda, K. Nakaoka, Growth process of Ba-poor YBCO film fabricated by TFA-MOD process. Physica C: Superconduct. 468, 1554 (2008)

    Article  Google Scholar 

  82. J. Yoshida, K. Tada, T. Tanaka, N. Mori, K. Yamada, R. Teranishi, M. Mukaida, T. Kiss, M. Inoue, Y. Shiohara, T. Izumi, K. Nakaoka, J. Matsuda, Effect of calcination conditions on microstructures and Jc of YBCO films fabricated by TFA-MOD method. Physica C: Superconduct. 468, 1550 (2008)

    Article  Google Scholar 

  83. C.S. Li, Y.F. Lu, P.X. Zhang, Z.M. Yu, B.W. Tao, J.Q. Feng, L.H. Jin, Study of modified TFA-MOD method for YBCO film growth. Physics Procedia 36, 1620 (2012)

    Article  Google Scholar 

  84. M.W. Rupich, X. Li, S. Sathyamurthy, C.L.H. Thieme, K. DeMoranville, J. Gannon, S. Fleshler, Second generation wire development at AMSC. IEEE Trans. Appl. Superconduct. 23, 6601205 (2013)

    Article  Google Scholar 

  85. M.W. Rupich, X. Li, S. Sathyamurthy, C. Thieme, S. Fleshler, Advanced development of TFA-MOD coated conductors. Physica C: Superconduct. 471, 919 (2011)

    Article  Google Scholar 

  86. D.W. Hazelton, Advances in 2G HTS conductor for high field applications, presented at the Low Temperature High Field Superconductivity Workshop, St. Petersburg, FL Nov. 5, 2013: http://www.superpower-inc.com/system/files/2013_1105+LTHFSW+SuperPower+FINAL.pdf

  87. W. Schmidt, H.-P. Kraemer, N.-W. Neumueller, U. Schoop, D. Verebelyi, A.P. Malozemoff, Investigation of YBCO coated conductors for fault current limiter applications. IEEE Trans. Appl. Superconduct. 17, 3471 (2007)

    Article  Google Scholar 

  88. V. Selvamanickam, Y. Yao, Y. Chen, T. Shi, Y. Liu, N.D. Khatri, J. Liu, C. Lei, E. Galstyan, G. Majkic, The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes. Superconduct. Sci. Tech. 25, 125013 (2012)

    Article  Google Scholar 

  89. Y. Jia, M. LeRoux, D.J. Miller, J.G. Wen, W.K. Kwok, U. Welp, M.W. Rupich, X. Li, S. Sathyamurthy, S. Fleshler, A.P. Malozemoff, A. Kayani, O. Ayala-Valenzuela, L. Civale, Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation. Appl. Phys. Lett. 103, 122601 (2013)

    Article  Google Scholar 

  90. M. W. Rupich, S. Sathyamurthy, S. Fleshler, Q. Li, V. Solovyov, T. Ozaki, U. Welp, W. K. Kwok, M. Leroux, A. E. K., D. J. Miller, K. Kihlstrom, L. Civale, S. Eley, A. Kayani, Engineered Pinning Landscapes for Enhanced 2G Coil Wire. IEEE Trans. on App Supercond. (in press)

    Google Scholar 

  91. L. Heatherly, H. Hsu, S.H. Wee, J. Li, S. Sathyamurthy, M. Paranthaman, A. Goyal, Slot die coating and conversion of LZO on rolling assisted biaxially textured Ni-W substrates with and without a very thin seed layer in low vacuum. IEEE Trans. Appl. Superconduct. 17, 3417 (2007)

    Article  Google Scholar 

  92. M.S. Bhuiyan, M. Paranthaman, S. Sathyamurthy, Chemical solution-based epitaxial oxide films on biaxially textured Ni–W substrates with improved out-of-plane texture for YBCO-coated conductors. J. Electron. Mater. 36, 1270 (2007)

    Article  Google Scholar 

  93. N.-W. Neumueller, W. Schmidt, H.-P. Kraemer, A. Otto, J. Maguire, J. Yuan, D. Folts, W. Romanosky, B. Gamble, D. Madura, A.P. Malozemoff, N. Lallouet, S.P. Ashworth, J.O. Willis, S. Ahmed, Development of resistive fault current limiters based on YBCO coated conductors. IEEE Trans. Appl. Superconduct. 19, 1950 (2009)

    Article  Google Scholar 

  94. J.B. Na, D.K. Park, S.E. Yang, Y.J. Kim, K.S. Chang, H. Kang, T.K. Ko, Experimental verification of non-inductive wound solenoid coil for large transport currents. Physica C: Superconduct. 469, 1754 (2009)

    Article  Google Scholar 

  95. T. Yazawa, K. Koyanagi, M. Takahashi, K. Toba, H. Takigami, M. Urata, Y. Iijima, T. Saitoh, N. Amemiya, Y. Shiohara, T. Ito, Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors. Physica C: Superconduct. 469, 1740 (2009)

    Google Scholar 

  96. P. Tixador, N.T. Nguyen, Design of ReBaCuO-coated conductors for FCL. Superconduct. Sci. Technol. 25, 014009 (2012)

    Article  Google Scholar 

  97. http://www.amsc.com/library/SAFCL_BRO_0812.pdf

  98. H. Yumura, Y. Ashibe, H. Itoh, M. Ohya, M. Watanabe, T. Masuda, C.S. Weber, Phase II of the Albany HTS cable project. IEEE Trans. Appl. Superconduct. 19, 1698 (2009)

    Article  Google Scholar 

  99. Super3C Project news release, 17 March 2009. http://www.bruker-est.com/super3c.html

  100. M. Ohya, Y. Ashibe, M. Watanabe, T. Minamino, H. Yumura, T. Masuda, T. Kato, Development of RE-123 superconducting cable. IEEE Trans. Appl. Superconduct. 19, 1766 (2009)

    Article  Google Scholar 

  101. S. Mukoyama, M. Yagi, T. Masuda, N. Amemiya, A. Ishiyama, N. Kashima, S. Nagaya, Y. Aoki, M. Yoshizumi, Y. Yamada, T. Izumi, Y. Shiohara, Development of (RE)BCO cables for HTS power transmission lines. Physica C: Superconduct. 469, 1688 (2009)

    Article  Google Scholar 

  102. J.F. Maguire, F. Schmidt, S. Bratt, T.E. Welsh, J. Yuan, Installation and testing results of Long Island transmission level HTS cable. IEEE Trans. Appl. Superconduct. 19, 1692 (2009)

    Article  Google Scholar 

  103. J. Maguire, D. Folts, J. Yuan, D. Lindsay, D. Knoll, S. Bratt, Z. Wolff, S. Kurtz, Development and demonstration of a fault current limiting HTS cable to be installed in the Con Edison grid. IEEE Trans. Appl. Superconduct. 19, 1740 (2009)

    Article  Google Scholar 

  104. C.M. Rey, R.C. Duckworth, J.A. Demko, A. Ellis, D.R. James, M.J. Gouge, E. Tuncer, Test results for a 25 meter prototype fault current limiting HTS cable for project Hydra. AIP Conf. Proc. 1218, 453 (2010)

    Article  Google Scholar 

  105. J. Maguire, D. Folts, J. Yuan, N. Henderson, D. Lindsay, D. Knoll, C. Rey, R. Duckworth, M. Gouge, Z. Wolff, S. Kurtz, Status and progress of a fault current limiting HTS cable to be installed in the Con Edison grid. AIP Conf. Proc. 1218, 445 (2010)

    Article  Google Scholar 

  106. http://ir.amsc.com/releasedetail.cfm?ReleaseID=860164

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srivatsan Sathyamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sathyamurthy, S., Thieme, C., Rupich, M.W. (2016). American Superconductor: Second Generation Superconductor Wire—From Research to Power Grid Applications. In: Madsen, L., Svedberg, E. (eds) Materials Research for Manufacturing. Springer Series in Materials Science, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-23419-9_5

Download citation

Publish with us

Policies and ethics