Advertisement

American Superconductor: Second Generation Superconductor Wire—From Research to Power Grid Applications

  • Srivatsan SathyamurthyEmail author
  • Cees Thieme
  • Martin W. Rupich
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)

Abstract

American Superconductor Corporation (AMSC) is the leader the development, manufacturing and deployment of high temperature superconducting (HTS) wire. The company’s HTS wire, called Amperium HTS wire, is the result of decades of a research and development effort on texturing of metals, epitaxial growth of complex oxides and innovative roll-to-roll manufacturing techniques. AMSC is also a leader in developing HTS wire based products that are being deployed in the power grid around the world. In this chapter we provide an overview of the high temperature superconducting materials, describe the challenges overcome in converting these materials into useful wires and summarize the major markets for the Amperium wire.

Keywords

Resistance Electrical High Temperature Superconducting Cube Texture Superconducting Magnetic Energy Storage Fault Current Limiter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.W. Rupich, E.E. Hellstrom, Bi-Ca-Sr-Cu-O HTS Wire, in 100 Years of Superconductivity, eds. by H. Rogalla, P.H Kes (CRC Press, Boca Raton, 2012), Chap. 11.4Google Scholar
  2. 2.
  3. 3.
  4. 4.
    S.H. Sohn, J.H. Lim, B.M. Yang, S.K. Lee, H.M. Jang, Y.H. Kim, H.S. Yang, D.L. Kim, H.R. Kim, Y.J. Won, S.D. Hwang, Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea. Physica C: Superconduct. 470, 1567 (2010)CrossRefGoogle Scholar
  5. 5.
    C. Ryu, H. Jang, C. Choi, Y. Kim, H. Kim, Current status of demonstration and commercialization of HTS cable system in grid in Korea, in Proceedings of 2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Beijing, China, 25–27 Oct 2013, ID3231, p. 539Google Scholar
  6. 6.
  7. 7.
    S. Jin, R.C. Sherwood, R.B. van Dover, T.H. Tiefel, D.W. Johnson Jr, High T C superconductors-composite wire fabrication. Appl. Phys. Lett. 51, 203 (1987)CrossRefGoogle Scholar
  8. 8.
    Superconductivity: Is the Party Over? Science, 244, 914 (1989)Google Scholar
  9. 9.
  10. 10.
    T. Hikata, K. Sato, H. Hitotsuyanagi, Ag-sheathed Bi-Pb-Sr-Ca-Cu-O superconducting wires with high critical current density. Jpn. J. Appl. Phys. L28, 82 (1989)CrossRefGoogle Scholar
  11. 11.
    L.N. Bulaevskii, J.R. Clem, L.I. Glazman, A.P. Malozemoff, Model for the low-temperature transport of Bi- based high-temperature superconducting tapes. Phys. Rev. B 45, 2545 (1992)Google Scholar
  12. 12.
    L.N. Bulaevskii, L.L. Daemen, M.P. Maley, J.Y. Coulter, Limits to the critical current in high-Tc superconducting tapes. Phys. Rev. B 48, 13798 (1993)CrossRefGoogle Scholar
  13. 13.
    K. Sato, Bismuth-based oxide (BSCCO) high-temperature superconducting wires for power grid applications: properties and fabrication, in Superconductors in the Power Grid, ed. by C. Rey (Elsevier, Amsterdam, 2015), Chap. 3Google Scholar
  14. 14.
    S.L. Cooper, K.E. Gray, in Physical Properties of High Temperature Superconductors, ed. by D.M. Ginsberg (World Scientific, Singapore, 1994), vol. IV, p. 61Google Scholar
  15. 15.
    Y. Jia, U. Welp, G.W. Crabtree, W.K. Kwok, A.P. Malozemoff, M.W. Rupich, S. Fleshler, J.R. Clem, Microstructure dependence of the c-axis critical current density in second-generation YBCO tapes. J. Appl. Phys. 110(8), 083923 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)Google Scholar
  17. 17.
    D. Dimos, P. Chaudhari, J. Mannhart, Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. Phys. Rev. B 41, 4038 (1990)CrossRefGoogle Scholar
  18. 18.
    H. Hilgenkamp, J. Mannhart, Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485 (2002)CrossRefGoogle Scholar
  19. 19.
    Y. Iijima, N. Tanabe, Y. Ikeno, O. Kohno, Biaxially aligned YBa2Cu3O7−x thin film tapes. Physica C: Superconduct. 185, 1959 (1991)CrossRefGoogle Scholar
  20. 20.
    Y. Iijima, N. Tanabe, O. Kohno, Y. Ikeno, In-plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1992)CrossRefGoogle Scholar
  21. 21.
    Y. Iijima, K. Kakimoto, M. Kimura, K. Takeda, T. Saitoh, Reel to reel continuous formation of Y-123 coated conductors by IBAD and PLD method. IEEE Trans. Appl. Superconduct. 11, 2816 (2001)CrossRefGoogle Scholar
  22. 22.
    M.W. Rupich, Second-generation (2G) coated high-temperature superconducting cables and wires for power grid applications, in Superconductors in the Power Grid, ed. by C. Rey (Elsevier, Amsterdam, 2015), Chap. 4Google Scholar
  23. 23.
    D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List, Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): an approach to superconducting tapes with high critical current density. Science 274, 755 (1996)CrossRefGoogle Scholar
  24. 24.
    E.D. Specht, A. Goyal, D.F. Lee, F.A. List, D.M. Kroeger, M. Paranthaman, R.K. Williams, D.K. Christen, Cube-textured nickel substrates for high-temperature superconductors. Superconduct. Sci. Technol. 11, 945 (1998)CrossRefGoogle Scholar
  25. 25.
    M.P. Goyal, U. Schoop, The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552 (2004)Google Scholar
  26. 26.
    P.N. Ardent, S.R. Foltyn, Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bull. 29, 543 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Iijima, K. Kakimoto, Y. Yamada, T. Izumi, T. Saitoh, Y. Shiohara, Research and development of biaxially textured IBAD-GZO templates for coated superconductors. MRS Bull. 29, 564 (2004)CrossRefGoogle Scholar
  28. 28.
    T. Kato, Y. Iijima, T. Muroga, T. Saitoh, T. Hirayama, I. Hirabayashi, Y. Yamada, T. Izumi, Y. Shiohara, Y. Ikuhara, TEM observations of Gd2Zr2O7 films formed by the ion-beam-assisted deposition method on an Ni-based alloy. Physica C: Superconduct. 392–396, 790 (2003)CrossRefGoogle Scholar
  29. 29.
    C.P. Wang, K.B. Do, M.R. Beasley, T.H. Geballe, R.H. Hammond, Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia. Appl. Phys. Lett. 71, 2955 (1997)CrossRefGoogle Scholar
  30. 30.
    X. Xiong, S. Kim, K. Zdun, S. Sambandam, A. Rar, K.P. Lenseth, V. Selvamanickam, Progress in high throughput processing of long-length, high quality, and low cost IBAD MgO buffer tapes at SuperPower. IEEE Trans. Appl. Superconduct. 19, 3319 (2009)CrossRefGoogle Scholar
  31. 31.
    K.P. Ko, H.S. Ha, H.K. Kim, K.K. Yu, R.K. Ko, S.H. Moon, S.S. Oh, C. Park, S.I. Yoo, Fabrication of highly textured IBAD-MgO template by continuous reel-to-reel process and its characterization. Physica C: Superconduct. 463–465, 564 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Hanyu, C. Tashita, T. Hayashida, Y. Hanada, K. Morita, Y. Sutoh, N. Nakamura, H. Kutami, M. Igarashi, K. Kakimoto, Y. Iijima, T. Saitoh, Long-length IBAD-MgO buffer layers for high performance RE-123 coated conductors by a large ion beam source. Physica C: Superconduct. 470, 1227 (2010)CrossRefGoogle Scholar
  33. 33.
    M. Paranthaman, T. Aytug, D.K. Christen, P.N. Arendt, S.R. Foltyn, J.R. Groves, L. Stan, R.F. DePaula, H. Wang, T.G. Holesinger, Growth of thick YBa2Cu3O7−δ films carrying a critical current of over 230 A/cm on single LaMnO3-buffered ion-beam assisted deposition MgO substrates. J. Mater. Res. 18, 2055 (2003)CrossRefGoogle Scholar
  34. 34.
    K. Hasegawa, K. Fujino, H. Mukai, M. Konishi, K. Hayashi, K. Sato, S. Honjo, Y. Sato, H. Ishii, Y. Iwata, Biaxially aligned YBCO film tapes fabricated by all pulsed laser deposition. Appl. Superconduct. 4, 487 (1996)CrossRefGoogle Scholar
  35. 35.
    M. Dürrschnabel, Z. Aabdin, V. Große, M. Bauer, G. Sigl, W. Prusseit, O. Eibl, Growth of biaxially-textured MgO buffer layers by inclined substrate deposition. Phys. Procedia 36, 1546 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Bauer, R. Metzger, R. Semerad, P. Berberich, H. Kinder, Inclined substrate deposition by evaporation of magnesium oxide for coated conductors. MRS Proc. 585, 35 (1999)CrossRefGoogle Scholar
  37. 37.
    N.M. Strickland, N.J. Long, E.F. Talantsev, P. Hoefakker, J.A. Xia, M.W. Rupich, W. Zhang, X. Li, T. Kodenkandath, Y. Huang, Nanoparticle additions for enhanced flux pinning in YBCO HTS films. Current Appl. Phys. 8, 372 (2008)CrossRefGoogle Scholar
  38. 38.
    Y. Chen, V. Selvamanickam, Y. Zhang, Y. Zuev, C. Cantoni, E. Specht, M.P. Paranthaman, T. Aytug, A, Goyal, D. Lee, Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Appl. Phys. Lett. 94, 062513 (2009)Google Scholar
  39. 39.
    R.J. Gupta, E.I. Cooper, E.A. Giess, J.I. Landman, B.W. Hussey, Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077 (1988)Google Scholar
  40. 40.
    P.C. McIntyre, M.J. Cima, M.F. Ng, Metalorganic deposition of high-Jc Ba2YCu3O7−x thin films from trifluoroacetate precursors onto (100) SrTiO3. J. Appl. Phys. 68, 4183 (1990)CrossRefGoogle Scholar
  41. 41.
    M.W. Rupich, D.T. Verebelyi, W. Zhang, T. Kodenkandath, X. Li, Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29, 572 (2004)CrossRefGoogle Scholar
  42. 42.
    P.C. McIntyre, M.J. Cima, Heteroepitaxial growth of chemically derived ex situ Ba2YCu3O7−x thin films. J. Mater. Res. 9, 2219 (1994)CrossRefGoogle Scholar
  43. 43.
    M. Yoshizumi, T. Nakanishi, J. Matsuda, K. Nakaoka, Y. Sutoh, T. Izumi, Y. Shiohara, Crystal growth of YBCO coated conductors by TFA–MOD method. Physica C: Superconduct. 468, 1531 (2008)CrossRefGoogle Scholar
  44. 44.
    X. Obradors, T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, X. Granados, Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions. Superconduct. Sci. Technol. 25, 123001 (2012)CrossRefGoogle Scholar
  45. 45.
    D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51, 619 (1987)CrossRefGoogle Scholar
  46. 46.
    S.R. Foltyn, H. Wang, L. Civale, Q.X. Jia, P.N. Arendt, B. Maiorov, Y. Li, M.P. Maley, J.L. MacManus-Driscoll, Overcoming the barrier to 1000 A∕cm width superconducting coatings. Appl. Phys. Lett. 87, 162505 (2005)CrossRefGoogle Scholar
  47. 47.
    H.M. Manasevit, Single-crystal Gallium Arsenide on insulating substrates. Appl. Phys. Lett. 12, 156 (1968)CrossRefGoogle Scholar
  48. 48.
    V. Selvamanickam, G. Carota, M. Funk, N. Vo, P. Haldar, U. Balachandran, M. Chudzik, P. Arendt, J.R. Groves, R. DePaula, B. Newnam, High-current Y–Ba–Cu–O coated conductor using metal organic chemical-vapor deposition and ion-beam-assisted deposition. IEEE Trans. Appl. Superconduct. 19, 3379 (2001)CrossRefGoogle Scholar
  49. 49.
    P. Berberich, B. Utz, W. Prusseit, H. Kinder, Homogeneous high quality YBa2Cu3O7 films on 3″ and 4″ substrates. Physica C: Superconduct. 219, 497 (1994)CrossRefGoogle Scholar
  50. 50.
    S.S. Oh, H.S. Ha, H.S. Kim, R.K. Ko, K.J. Song, D.W. Ha, T.H. Kim, N.J. Lee, D. Youm, J.S. Yang, H.K. Kim, K.K. Yu, S.H. Moon, K.P. Ko, S.I. Yoo, Development of long-length SmBCO coated conductors using a batch-type reactive co-evaporation method. Superconduct. Sci. Technol. 21, 034003 (2008)CrossRefGoogle Scholar
  51. 51.
    T. Ohnishi, J.-U. Huh, R.H. Hammond, W. Jo, High rate in situ YBa2Cu3O7 film growth assisted by liquid phase. J. Mater. Res. 19, 977 (2004)CrossRefGoogle Scholar
  52. 52.
    J.L. MacManus-Driscoll, A. Kursumovic, B. Maiorov, L. Civale, Q.X. Jia, S.R. Foltyn, H. Wang, YBa2Cu3O7 Coated conductor grown by hybrid liquid phase epitaxy. IEEE Trans. Appl. Superconduct. 17, 2537 (2007)CrossRefGoogle Scholar
  53. 53.
    S.H. Moon, Recent progress of 2G superconducting wire at SuNAM. Presentation at the International Workshop on coated Conductors for Applications 2014, Jeju, Korea, 2 Dec 2014Google Scholar
  54. 54.
    M.W. Rupich, X. Li, S. Sathyamurthy, C.L.H. Thieme, K. DeMoranville, J. Gannon, S. Fleshler, Second generation wire development at AMSC. IEEE Trans. Appl. Superconduct. 23, 6601205 (2013)CrossRefGoogle Scholar
  55. 55.
    X. Li, M.W. Rupich, C.L.H. Thieme, M. Teplitsky, D. Buczek, E. Siegal, D. Tucker, J. Schreiber, K. DeMoranville, J. Inch, R. Savoy, S. Fleshler, The development of second generation HTS wire at American superconductor. IEEE Trans. Appl. Superconduct. 19, 3231 (2009)CrossRefGoogle Scholar
  56. 56.
    J.B. Goyal, D.M. Kroeger, D. Norton, E.D. Specht, D.K. Christen, Preparing biaxially textured metal alloy article; superconductors, United States Patent No. 5,741,377 (1998)Google Scholar
  57. 57.
    V. Goler, G. Sachs, Walz und Rekristallizationstextur regular-flachenzentrierter Metalle III, IV. Z. Angew. Phys. 59, 477 (1929)Google Scholar
  58. 58.
    P.C.J. Gallagher, The influence of alloying, temperature and related effects on the stacking fault energy. Met. Trans. 1, 2429 (1970)Google Scholar
  59. 59.
    S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, Z.K. Liu, Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys: Condens. Matter 24, 505403 (2012)Google Scholar
  60. 60.
    R.M. Bozorth, Ferromagnetism (D. van Nostrand, New York, 1951)Google Scholar
  61. 61.
    R. Huhne, J. Eickemeyer, V.S. Sarma, A. Guth, T. Thersleff, J. Freudenberger, O. de Haas, M. Weigand, J.H. Durrell, L. Schultz, B. Holzapfel, Application of textured highly alloyed Ni–W tapes for preparing coated conductor architectures. Superconduct. Sci. Technol. 23, 034015 (2010)CrossRefGoogle Scholar
  62. 62.
    L. Delannay, Observation and modelling of grain interactions and grain subdivision in rolled cubic polycrystals. Ph.D. Thesis, Catholic University, Leuven, May 2001Google Scholar
  63. 63.
    F.J. Humphreys, M. Hatherley, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), Chap. 12Google Scholar
  64. 64.
    D.M. Feldmann, T.G. Holesinger, R. Feenstra, C. Cantoni, W. Zhang, X. Li, M. Rupich, A. Malozemoff, A. Gurevich, D.C. Larbalestier, Grain orientations and grain boundary networks of YBa2Cu3O7−δ films deposited by metalorganic and pulsed laser deposition on biaxially textured Ni–W substrates. J. Mater. Res. 21, 923 (2006)CrossRefGoogle Scholar
  65. 65.
    J.M.S. Skakle, Crystal chemical substitutions and doping of Yba2Cu3Ox and related superconductors. Mater. Sci. Eng. R23, 1 (1998)CrossRefGoogle Scholar
  66. 66.
    G.D.P. Norton, J.D. Budai, M. Paranthaman, E D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E. Hartfield, V.K. Sikka, High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69, 1795 (1996)Google Scholar
  67. 67.
    Q. He, D.K. Christen, J.D. Budai, E.D. Specht, D.F. Lee, A. Goyal, D.P. Norton, M. Paranthaman, F.A. List, D.M. Kroeger, Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes: new substrates for high-current, high-temperature superconductors. Physica C: Superconduct. 275, 155 (1997)CrossRefGoogle Scholar
  68. 68.
    M. Paranthaman, D.F. Lee, A. Goyal, E.D. Specht, P.M. Martin, X. Cui, J.E. Mathis, R. Feenstra, D.K. Christen, D.M. Kroeger, Growth of biaxially textured RE2O3 buffer layers on rolled-Ni substrates using reactive evaporation for HTS-coated conductors. Superconduct. Sci. Tech. 12, 319 (1999)CrossRefGoogle Scholar
  69. 69.
    M.N. Molodyk, S. Street, L. Castellani, A. Ignatiev, All-MOCVD technology for coated conductor fabrication. IEEE Trans. Appl. Superconduct. 21, 3175 (2011)Google Scholar
  70. 70.
    F.A List, A. Goyal, M. Paranthaman, D.P Norton, E.D Specht, D.F Lee, D.M Kroeger, High Jc YBCO films on biaxially textured Ni with oxide buffer layers deposited using electron beam evaporation and sputtering. Physica C: Superconduct. 302, 87 (1998)Google Scholar
  71. 71.
    D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List, Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): an approach to superconducting tapes with high critical current density. Science 274, 755 (1996)CrossRefGoogle Scholar
  72. 72.
    T. Aytug, M. Paranthaman, B.W. Kang, S. Sathyamurthy, A. Goyal, D.K. Christen, La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7−δ coated conductors. Appl. Phys. Lett. 79, 2205 (2001)CrossRefGoogle Scholar
  73. 73.
    T. Aytug, J.Z. Wu, C. Cantoni, D.T. Verebelyi, E.D. Specht, M. Paranthaman, D.P. Norton, D.K. Christen, R.E. Ericson, C.L. Thomas, Growth and superconducting properties of YBa2Cu3O7−δ films on conductive SrRuO3 and LaNiO3 multilayers for coated conductor applications. Appl. Phys. Lett. 76, 760 (2000)CrossRefGoogle Scholar
  74. 74.
    S. Sathyamurthy, M. Paranthaman, H.Y. Zhai, S. Kang, T. Aytug, C. Cantoni, K.J. Leonard, E.A. Payzant, H.M. Christen, A. Goyal, X. Li, U. Schoop, T. Kodenkandath, M.W. Rupich, Chemical solution deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. J. Mater. Res. 19, 2117 (2004)CrossRefGoogle Scholar
  75. 75.
    K. Knoth, R. Hühne, S. Oswald, L. Schultz, B. Holzapfel, Highly textured La2Zr2O7 buffer layers for YBCO-coated conductors prepared by chemical solution deposition. Superconduct. Sci. Tech. 18, 334 (2005)CrossRefGoogle Scholar
  76. 76.
    C. Cantoni, D.K. Christen, R. Feenstra, A. Goyal, G.W. Ownby, D.M. Zehner, D.P. Norton, Reflection high-energy electron diffraction studies of epitaxial oxide seed-layer growth on rolling-assisted biaxially textured substrate Ni(001): The role of surface structure and chemistry. Appl. Phys. Lett. 79, 3077 (2001)CrossRefGoogle Scholar
  77. 77.
    C. Cantoni, D.K. Christen, D.K. Heatherly, M.M. Kowalewski, F.A. List, A. Goyal, G. Ownby, D.M. Zehner, B.W. Kang, D.M. Kroeger, Quantification and control of the sulfur c (2 × 2) superstructure on {100}〈100〉 Ni for optimization of YSZ, CeO2 and SrTiO3 seed layers texture. J. Mat. Res. 17, 2549 (2002)CrossRefGoogle Scholar
  78. 78.
    C. Cantoni, D.K. Christen, A. Goyal, L. Heatherly, F.A. List, G.W. Ownby, D.M. Zehner, H.M. Christen, C.M. Rouleau, Growth of oxide seed layers on Ni and other technologically interesting metal substrates: issues related to formation and control of sulfur superstructures for texture optimization. IEEE Trans. Appl. Superconduct. 13, 2646 (2003)CrossRefGoogle Scholar
  79. 79.
    Y. Tokunaga, T. Honjo, T. Izumi, Y. Shiohara, Y. Iijima, T. Saitoh, T. Goto, A. Yoshinaka, A. Yajima, Advanced TFA-MOD process of high critical current YBCO films for coated conductors. Cyrogenics 44, 817 (2004)CrossRefGoogle Scholar
  80. 80.
    H. Fuji, R. Teranishi, Y. Kito, J. Matsuda, K. Nakaoka, T. Izum, Y. Shiohara, Y. Yamada, A. Yajima, T. Saitoh, Progress on TFA-MOD coated conductor development. Physica C: Superconduct. 426–431, 938 (2005)CrossRefGoogle Scholar
  81. 81.
    K. Tada, J. Yoshida, N. Mori, K. Yamada, R. Teranishi, M. Mukaida, T. Kiss, M. Inoue, Y. Shiohara, T. Izumi, J. Matsuda, K. Nakaoka, Growth process of Ba-poor YBCO film fabricated by TFA-MOD process. Physica C: Superconduct. 468, 1554 (2008)CrossRefGoogle Scholar
  82. 82.
    J. Yoshida, K. Tada, T. Tanaka, N. Mori, K. Yamada, R. Teranishi, M. Mukaida, T. Kiss, M. Inoue, Y. Shiohara, T. Izumi, K. Nakaoka, J. Matsuda, Effect of calcination conditions on microstructures and Jc of YBCO films fabricated by TFA-MOD method. Physica C: Superconduct. 468, 1550 (2008)CrossRefGoogle Scholar
  83. 83.
    C.S. Li, Y.F. Lu, P.X. Zhang, Z.M. Yu, B.W. Tao, J.Q. Feng, L.H. Jin, Study of modified TFA-MOD method for YBCO film growth. Physics Procedia 36, 1620 (2012)CrossRefGoogle Scholar
  84. 84.
    M.W. Rupich, X. Li, S. Sathyamurthy, C.L.H. Thieme, K. DeMoranville, J. Gannon, S. Fleshler, Second generation wire development at AMSC. IEEE Trans. Appl. Superconduct. 23, 6601205 (2013)CrossRefGoogle Scholar
  85. 85.
    M.W. Rupich, X. Li, S. Sathyamurthy, C. Thieme, S. Fleshler, Advanced development of TFA-MOD coated conductors. Physica C: Superconduct. 471, 919 (2011)CrossRefGoogle Scholar
  86. 86.
    D.W. Hazelton, Advances in 2G HTS conductor for high field applications, presented at the Low Temperature High Field Superconductivity Workshop, St. Petersburg, FL Nov. 5, 2013: http://www.superpower-inc.com/system/files/2013_1105+LTHFSW+SuperPower+FINAL.pdf
  87. 87.
    W. Schmidt, H.-P. Kraemer, N.-W. Neumueller, U. Schoop, D. Verebelyi, A.P. Malozemoff, Investigation of YBCO coated conductors for fault current limiter applications. IEEE Trans. Appl. Superconduct. 17, 3471 (2007)CrossRefGoogle Scholar
  88. 88.
    V. Selvamanickam, Y. Yao, Y. Chen, T. Shi, Y. Liu, N.D. Khatri, J. Liu, C. Lei, E. Galstyan, G. Majkic, The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes. Superconduct. Sci. Tech. 25, 125013 (2012)CrossRefGoogle Scholar
  89. 89.
    Y. Jia, M. LeRoux, D.J. Miller, J.G. Wen, W.K. Kwok, U. Welp, M.W. Rupich, X. Li, S. Sathyamurthy, S. Fleshler, A.P. Malozemoff, A. Kayani, O. Ayala-Valenzuela, L. Civale, Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation. Appl. Phys. Lett. 103, 122601 (2013)CrossRefGoogle Scholar
  90. 90.
    M. W. Rupich, S. Sathyamurthy, S. Fleshler, Q. Li, V. Solovyov, T. Ozaki, U. Welp, W. K. Kwok, M. Leroux, A. E. K., D. J. Miller, K. Kihlstrom, L. Civale, S. Eley, A. Kayani, Engineered Pinning Landscapes for Enhanced 2G Coil Wire. IEEE Trans. on App Supercond. (in press)Google Scholar
  91. 91.
    L. Heatherly, H. Hsu, S.H. Wee, J. Li, S. Sathyamurthy, M. Paranthaman, A. Goyal, Slot die coating and conversion of LZO on rolling assisted biaxially textured Ni-W substrates with and without a very thin seed layer in low vacuum. IEEE Trans. Appl. Superconduct. 17, 3417 (2007)CrossRefGoogle Scholar
  92. 92.
    M.S. Bhuiyan, M. Paranthaman, S. Sathyamurthy, Chemical solution-based epitaxial oxide films on biaxially textured Ni–W substrates with improved out-of-plane texture for YBCO-coated conductors. J. Electron. Mater. 36, 1270 (2007)CrossRefGoogle Scholar
  93. 93.
    N.-W. Neumueller, W. Schmidt, H.-P. Kraemer, A. Otto, J. Maguire, J. Yuan, D. Folts, W. Romanosky, B. Gamble, D. Madura, A.P. Malozemoff, N. Lallouet, S.P. Ashworth, J.O. Willis, S. Ahmed, Development of resistive fault current limiters based on YBCO coated conductors. IEEE Trans. Appl. Superconduct. 19, 1950 (2009)CrossRefGoogle Scholar
  94. 94.
    J.B. Na, D.K. Park, S.E. Yang, Y.J. Kim, K.S. Chang, H. Kang, T.K. Ko, Experimental verification of non-inductive wound solenoid coil for large transport currents. Physica C: Superconduct. 469, 1754 (2009)CrossRefGoogle Scholar
  95. 95.
    T. Yazawa, K. Koyanagi, M. Takahashi, K. Toba, H. Takigami, M. Urata, Y. Iijima, T. Saitoh, N. Amemiya, Y. Shiohara, T. Ito, Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors. Physica C: Superconduct. 469, 1740 (2009)Google Scholar
  96. 96.
    P. Tixador, N.T. Nguyen, Design of ReBaCuO-coated conductors for FCL. Superconduct. Sci. Technol. 25, 014009 (2012)CrossRefGoogle Scholar
  97. 97.
  98. 98.
    H. Yumura, Y. Ashibe, H. Itoh, M. Ohya, M. Watanabe, T. Masuda, C.S. Weber, Phase II of the Albany HTS cable project. IEEE Trans. Appl. Superconduct. 19, 1698 (2009)CrossRefGoogle Scholar
  99. 99.
    Super3C Project news release, 17 March 2009. http://www.bruker-est.com/super3c.html
  100. 100.
    M. Ohya, Y. Ashibe, M. Watanabe, T. Minamino, H. Yumura, T. Masuda, T. Kato, Development of RE-123 superconducting cable. IEEE Trans. Appl. Superconduct. 19, 1766 (2009)CrossRefGoogle Scholar
  101. 101.
    S. Mukoyama, M. Yagi, T. Masuda, N. Amemiya, A. Ishiyama, N. Kashima, S. Nagaya, Y. Aoki, M. Yoshizumi, Y. Yamada, T. Izumi, Y. Shiohara, Development of (RE)BCO cables for HTS power transmission lines. Physica C: Superconduct. 469, 1688 (2009)CrossRefGoogle Scholar
  102. 102.
    J.F. Maguire, F. Schmidt, S. Bratt, T.E. Welsh, J. Yuan, Installation and testing results of Long Island transmission level HTS cable. IEEE Trans. Appl. Superconduct. 19, 1692 (2009)CrossRefGoogle Scholar
  103. 103.
    J. Maguire, D. Folts, J. Yuan, D. Lindsay, D. Knoll, S. Bratt, Z. Wolff, S. Kurtz, Development and demonstration of a fault current limiting HTS cable to be installed in the Con Edison grid. IEEE Trans. Appl. Superconduct. 19, 1740 (2009)CrossRefGoogle Scholar
  104. 104.
    C.M. Rey, R.C. Duckworth, J.A. Demko, A. Ellis, D.R. James, M.J. Gouge, E. Tuncer, Test results for a 25 meter prototype fault current limiting HTS cable for project Hydra. AIP Conf. Proc. 1218, 453 (2010)CrossRefGoogle Scholar
  105. 105.
    J. Maguire, D. Folts, J. Yuan, N. Henderson, D. Lindsay, D. Knoll, C. Rey, R. Duckworth, M. Gouge, Z. Wolff, S. Kurtz, Status and progress of a fault current limiting HTS cable to be installed in the Con Edison grid. AIP Conf. Proc. 1218, 445 (2010)CrossRefGoogle Scholar
  106. 106.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Srivatsan Sathyamurthy
    • 1
    Email author
  • Cees Thieme
    • 1
  • Martin W. Rupich
    • 1
  1. 1.Materials R&DAMSCDevensUSA

Personalised recommendations