Advertisement

KEMET Electronics: Breakthroughs in Capacitor Technology

  • Abhijit GuravEmail author
  • Xilin Xu
  • Yuri Freeman
  • Erik Reed
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)

Abstract

With their world-wide production volume exceeding two trillion pieces per year, capacitors account for the majority of the parts mounted on almost any printed circuit board in any application. As electronics continues on its trend of miniaturization, increased functionality and connectivity, the need for high reliability capacitors is growing rapidly in automotive, medical, military, aerospace and industrial electronics. This chapter describes how KEMET Electronics is leading development in these areas with significant innovations in new products for extreme high temperature environments and for high reliability military and aerospace applications.

Keywords

Life Test Part Type Ceramic Dielectric Anodic Oxide Film Equivalent Series Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ceramic Capacitors: World Markets, Technologies and Opportunities Report, 2012–2017 (Paumanok Publications, Inc., Cary, NC 27519)Google Scholar
  2. 2.
    R. Kirschman, Present and future needs in high temperature electronics for the well logging industry, pp. 132–133, High Temperature Electronics, IEEE (1998)Google Scholar
  3. 3.
    M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 48(2), 249–257 (2001)Google Scholar
  4. 4.
    R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27(3), 164–176 (2004)Google Scholar
  5. 5.
    E.F. Alberta, W.S. Hackenberger, C.A. Randall, T.R. Shrout, High temperature ceramic multilayer capacitors, pp. 69–72, in Proceedings of the 24th Symposium for Passive Components (CARTS USA 2004), San Antonio, TX, USA, 2004Google Scholar
  6. 6.
    C.J. Stringer, N.J. Donnelly, T.R. Shrout, C.A. Randall, E.F. Alberta, W.S. Hackenberger, Dielectric characteristics of perovskite structured high temperature relaxor ferroelectrics. J. Am. Ceram. Soc. 91(6), 1781–1787 (2008)CrossRefGoogle Scholar
  7. 7.
    C.A. Randall, et al., High temperature and high energy density dielectric materials, pp. 346–351, Pulsed Power Conference, PPC ‘09, IEEE (2009)Google Scholar
  8. 8.
  9. 9.
    A. Gurav, X. Xu, P. Pinceloup, A. Tajuddin, M. Sato, C. Randall, G.Y. Yang, Characteristics of CaZrO3-based BME C0G dielectric, pp. 359–362, in Proceedings of the 13th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, Awaji Island, Hyogo, Japan, 2007Google Scholar
  10. 10.
    X. Xu, M. Niskala, A. Gurav, M. Laps, K. Saarinen, D. Montanari, E. Boni, Advances in Class-I C0G MLCC and SMD Film Capacitors. pp. 449–461, in Proceedings of the 28th Symposium for Passive Components (CARTS USA 2008), Newport Beach, CA, USA (2008)Google Scholar
  11. 11.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D Appl. Phys. 29, 253–258 (1996)CrossRefGoogle Scholar
  12. 12.
    M.D. Waugh, F.J. Toal, M. Pan, T.R. Shrout, C.A. Randall, Structure-property investigation of a modified PbHfO3 composition for high energy storage, in Ceramic Transactions, vol. 90, Manufacturing of Electronic Materials and Components, eds. by A. Ghosh, B. Hiremath, S. Sumita. The American Ceramic Society (1998) pp. 153–163Google Scholar
  13. 13.
    T. Prokopowicz, A. Vaskas, Research and development, intrinsic reliability, subminiature ceramic capacitors, Final Report, ECOM-9705-F, 1969 NTIS AD-864068Google Scholar
  14. 14.
    J.L. Paulsen, E.K. Reed, Highly accelerated life testing of KEMET base metal electrode (BME) ceramic chip capacitors, pp. 265–270, CARTS USA 2001Google Scholar
  15. 15.
    S. Kirchmeyer, K. Reuter, J. Mat. Chem. 15, 2077 (2005)CrossRefGoogle Scholar
  16. 16.
    N. Koch, A. Vollmer, A. Elschner, Appl. Phys. Lett. 90, 043512 (2007)CrossRefGoogle Scholar
  17. 17.
    K. Ueno, L. Dominey, R. Alwitt, in 211th Meeting of The Electrochemical Society–B1-Electrochemistry of Novel Electrode Materials for Energy Conversion and Storage, 6–10 May 2007Google Scholar
  18. 18.
    Y. Kudoh et al., Synth. Met. 41–43, 1133–1136 (1991)CrossRefGoogle Scholar
  19. 19.
    L. Young, Anodic Oxide Films (Academic Press, New York, 1961)Google Scholar
  20. 20.
    J. Young, J. Qiu, R. Hahn, in Proceedings of the 28th Symposium for Passive Electronic Components, Newport Beach, CA, 241–251, (2008)Google Scholar
  21. 21.
    Y. Freeman, Passive Component Industry, January/February 2005, 6Google Scholar
  22. 22.
    Y. Freeman, P. Lessner, Passive Component Industry, July/August 2008, 22Google Scholar
  23. 23.
    B. Boiko, V. Kopach, S. Melentyev, Y. Pozdeev, V. Starikov, Thin Solid Films 229, 207 (1993)CrossRefGoogle Scholar
  24. 24.
    D.A. Vermilyea, J. Electr. Soc. 104, 542 (1957)CrossRefGoogle Scholar
  25. 25.
    Y. Freeman, W. Harrell, I. Luzinov, B. Holman, Ph Lessner, J. Elechtrochem. Soc. 156(6), G65 (2009)CrossRefGoogle Scholar
  26. 26.
    R.E. Powell, J.J. Campbell, J. Electrochem. Soc. 111, 1230 (1964)CrossRefGoogle Scholar
  27. 27.
    N. Jackson, J. Appl. Electrochem. 91, 3 (1973)Google Scholar
  28. 28.
    Y. Pozdeev-Freeman, Y. Rozenberg, A. Gladkikh, M. Karpovsli, A. Palevski, J. Mater. Sci. : Mater. Electron. 9, 309 (1998)Google Scholar
  29. 29.
    B. Melody et al., US Patent 6,319,459 B1Google Scholar
  30. 30.
    W. Albrecht et al., US Patent 4,537,641Google Scholar
  31. 31.
    Y. Qiu, R. Hahn, K. Brenneman, US Patent 7,563,290 B2Google Scholar
  32. 32.
    U. Merker et al. US Patent Application Publication No: US 2007/0064376 A1Google Scholar
  33. 33.
    Y. Freeman, Y.Qiu, S. Hussey, P. Lessner, US Pat. No. 8,310,815 B2Google Scholar
  34. 34.
    Y. Freeman, G. Alapatt, W. Harrell, P. Lessner, J. Electrochem. Soc. 159(10), A1646–1651 (2012)CrossRefGoogle Scholar
  35. 35.
    Q. Chen, Y. Freeman, S. Hussey, US Patent No. 8,379,371 B2Google Scholar
  36. 36.
    Y. Freeman, G. Alapatt, W. Harrell, I. Luzinov, P. Lessner, J. Qazi, ESC J. Solid State Sci. Technol. 2(11), N197–N204 (2013)CrossRefGoogle Scholar
  37. 37.
    Y. Freeman, J. Chen, R. Fuller, S. Hussey, E. Jones, T. Kinard, P. Lessner, M. Maich, T. McKinney, in Proceedings of the CARTS-Europe, Munch, Germany, Nov 2010, p. 143Google Scholar
  38. 38.
    Y. Freeman, US Pat. No. 7,671,603 B2Google Scholar
  39. 39.
    J. Paulsen, E. Reed, Y. Freeman, US Pat. No. 8,441,265 B2Google Scholar
  40. 40.
  41. 41.
    H. Chesbrough, “Open Innovation,” Harvard Business School Press, 2006Google Scholar
  42. 42.
    NSF Grant Opportunities for Academic Liaison with Industry (GOALI) grants, http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504699
  43. 43.
    P. Sims, Little Bets—Breakthrough Ideas from Small Discoveries (Free Press, New York, 2011)Google Scholar
  44. 44.
    Kim E. Ruyle, Lessons from a CEO’s Journal (Inventive Talent Consulting, LLC, Coral Gables, FL, 2014)Google Scholar
  45. 45.
    S.H. Thomke, Experimentation Matters (Harvard Business School Press, Boston, 2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Abhijit Gurav
    • 1
    Email author
  • Xilin Xu
    • 1
  • Yuri Freeman
    • 1
  • Erik Reed
    • 1
  1. 1.KEMET Electronics CorporationSimpsonvilleUSA

Personalised recommendations