Advertisement

General Electric Company: Selected Applications of Ceramics and Composite Materials

  • Gregory Corman
  • Ram Upadhyay
  • Shatil Sinha
  • Sean Sweeney
  • Shanshan Wang
  • Stephan Biller
  • Krishan LuthraEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)

Abstract

The General Electric Company (GE) is a global technology company involved in a broad range of businesses relying heavily on advanced materials and manufacturing technologies. This chapter focuses on three advanced technologies: (i) ceramic matrix composites (CMCs), a revolutionary materials technology for aircraft engines and industrial gas turbines, (ii) polymer matrix composite (PMC) fan blades for aircraft engines, primarily for weight reduction, and (iii) NaMx batteries that rely very heavily on ceramics for their efficient operation.

Keywords

General Electric Aircraft Engine Polymer Matrix Composite Chemical Vapor Infiltration Technology Readiness Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Parts of the early CMC work were sponsored by the U.S. DOE under contracts DE-FC26-92CE41000 and DE-FC26-00CH11047. The authors wish to thank the research teams at GE Global Research, GE Aviation, GE Power & Water, and GE Transportation for numerous contributions to the research described in this chapter.

References

  1. 1.
    G.S. Corman, K.L. Luthra, M.K. Brun, P.J. Meschter, Toughened silcomp composites for gas turbine engine applications. DOE CFCC Program Phase I Final Report, Report #DOE/CE/41000-2, July 1994Google Scholar
  2. 2.
    G.S. Corman, K.L. Luthra, Melt infiltrated ceramic composites (HiPerComp™) for gas turbine engine applications. DOE CFCC Program Phase II Final Report, Report #DOE/CE/41000-3, Jan 2006Google Scholar
  3. 3.
    G.S. Corman, Melt infiltrated ceramic matrix composites for shrouds and combustor liners of advanced industrial gas turbines. DOE Advanced Materials for Advanced Industrial Gas Turbines Program Final Report, contract DE-FC26-00CH11047, OSTI ID 1004879, Jan 2011Google Scholar
  4. 4.
  5. 5.
  6. 6.
    P. Morgan, Carbon Fibers and Their Composites (CRC Press, Boca Raton, 2005)Google Scholar
  7. 7.
    D.C. Phillips, R.A.J. Sambell, D.H. Bowen, The mechanical properties of carbon fibre reinforced pyrex glass. J. Mater. Sci. 7, 1454–1464 (1972)CrossRefGoogle Scholar
  8. 8.
    S. Yajima, K. Okamura, J. Hayashi, M. Omori, Synthesis of continuous SiC fibers with high tensile strength. J. Am. Ceram. Soc. 59, 324–327 (1976)CrossRefGoogle Scholar
  9. 9.
    M. Takeda, J. Sakamoto, S. Saeki, Y. Imai, H. Ichikawa, High performance silicon carbide fiber Hi-Nicalon for ceramic matrix composites. Ceram. Eng. Sci. Proc. 16(4), 37–44 (1995)CrossRefGoogle Scholar
  10. 10.
    F.S. Gallaso, Chapter 4 in Advanced Fibers and Composites (Taylor and Francis, 1989), pp. 59–65Google Scholar
  11. 11.
    J.A. DiCarlo, H. Yun, Non-oxide (silicon carbide) fibers, Chapter 2 in Handbook of Ceramic Composites, ed. by N.P. Bansal (Kluwer Academic Publishing, 2005), pp. 33–52Google Scholar
  12. 12.
    T. Mah, M.G. Mendiratta, A.P. Katz, K.S. Mazdiyasni, Recent developments in fiber-reinforced high temperature ceramic composites. Am. Ceram. Soc. Bull. 66(2), 304–308 (1987)Google Scholar
  13. 13.
    J. Cornie, Y-M.Chang, D.R. Uhlmann, A. Mortensen, J.M. Collins, Processing of metal and ceramic matrix composites. Am. Ceram. Soc. Bull. 65(2), 293–304 (1986)Google Scholar
  14. 14.
    L.J. Schioler, J.J. Stiglich, Ceramic matrix composites: a literature review. Am. Ceram. Soc. Bull. 65(2), 289–292 (1986)Google Scholar
  15. 15.
    R.N. Singh, M.K. Brun, Effect of boron nitride on fiber-matrix interactions, GE report 87CRD051 (1987)Google Scholar
  16. 16.
    A.R. Bunsel, Oxide fibers, Chapter 1 in Handbook of Ceramic Composites, ed. by N.P. Bansal (Kluwer Academic Publishing, 2005), pp. 3–31Google Scholar
  17. 17.
    M.P. Borom, M.K. Brun, L.E. Szala, Kinetics of oxidation of carbide and silicide dispersed in oxide matrices. Adv. Ceram. Mater. 3(5), 491–497 (1988)CrossRefGoogle Scholar
  18. 18.
    K.L. Luthra, H.D. Park, Oxidation of SiC-reinforced oxide matrix composites at 1375-1575°C. J. Am. Ceram. Soc. 73, 1014–1023 (1990)CrossRefGoogle Scholar
  19. 19.
    K. Keller, T-I. Mah, Development of monazite (LaPO4) coated-fiber reinforced oxide-oxide composites. Presented at the 5th International Conference on High Temperature Ceramic Matrix Composites (HTCMC5), Seattle WA, 12–16 Sept 2004Google Scholar
  20. 20.
    G.S. Corman, K.L. Luthra, M.K. Brun, Silicon melt infiltrated ceramic composites—processes and properties, Chapter 16 in Ceramic Gas Turbine Component Development and Characterization, ed. by M. vanRoode, M.K. Ferber, D.W. Richerson (ASME Press, 2003), pp. 291–312Google Scholar
  21. 21.
    M.P. Borom, W.B. Hillig, R.J. Singh, W.A. Morrison, L.V. Interrante, Fiber containing composite, U.S. Patent 5,015,540 (1991)Google Scholar
  22. 22.
    K.L. Luthra, R.N. Singh, M.K. Brun, Toughened silcomp composites—process and preliminary properties. Am. Ceram. Soc. Bull. 72(7), 79–85 (1993)Google Scholar
  23. 23.
    J.A. DiCarlo, H.M. Yun, G.N. Morscher and R.T. Bhatt, SiC/SiC composites for 1200°C and above, Chapter 4 in Handbook of Ceramic Composites, ed. by N.P. Bansal (Kluwer Academic Publishing, 2005), pp. 77–98Google Scholar
  24. 24.
    G.S. Corman, K.L. Luthra, Silicon melt infiltrated ceramic composites (HiPerComp™), Chapter 5 in Handbook of Ceramic Composites, ed. by N.P. Bansal (Kluwer Academic Publishing, 2005), pp. 99–115Google Scholar
  25. 25.
    R. Nimmer, G. Corman, R. Gilmore, Orthotropic mechanical data characterizing uni-directional and cross-plied HiPerComp™ composite material, in 29th Annual Conference on Composites, Materials, and Structures, Cape Canaveral, FL, 24–27 Jan 2005Google Scholar
  26. 26.
    D. Dunn, The Effect of Fiber Volume Fraction in HiPerComp™ SiC-SiC Composites, Ph.D. thesis, Alfred University, Sept 2010Google Scholar
  27. 27.
    D. Dunn, G. Kirby, Effect of fiber volume fraction on the creep rupture of HiPerComp™ CMC, in 34th Annual Conference on Composites, Materials, and Structures, Cape Canaveral, FL, 25–28 Jan 2010Google Scholar
  28. 28.
    E.L. Courtright, J.T. Prater, C.H. Henager, E.N. Greenwell, Oxygen permeability for selected ceramic oxides in the range 1200°C–1700°C, Wright Laboratory Technical Report WL-TR-91-4006 (1991)Google Scholar
  29. 29.
    E.J. Opila, R.E. Hann, Paralinear oxidation of CVD SIC in water vapor. J. Am. Ceram. Soc. 80(1), 197–205 (1997)CrossRefGoogle Scholar
  30. 30.
    E.J. Opila, D.S. Fox, N.S. Jacobson, Mass spectrometric identification of Si-O-H(g) species from the reaction of silica with water vapor at atmospheric pressure. J. Am. Ceram. Soc. 80(4), 1009–1012 (1997)CrossRefGoogle Scholar
  31. 31.
    E.J. Opila, J.L. Smialek, R.C. Robinson, C.S. Fox, N.S. Jacobon, SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model. J. Am. Ceram. Soc. 82(7), 1826–1834 (1999)CrossRefGoogle Scholar
  32. 32.
    H. Wang, K.L. Luthra, Ceramic with preferential oxygen reactive layer, U.S. Patent No. 6,299,988 (2001)Google Scholar
  33. 33.
    D.J. Landini, A.S. Fareed, H. Wang, P.A. Craig, S. Hemstad, Ceramic matrix composites development at ge power systems composites, LLC, Chapter 14 in Ceramic Gas Turbine Component Development and Characterization, ed. by M. vanRoode, M.K. Ferber, D.W. Richerson (ASME Press, 2003), pp. 259–276Google Scholar
  34. 34.
  35. 35.
  36. 36.
    F. Worthoff, System requirements flowdown to components influencing manufacturability, in Composite Manufacturing Symposium, GE Global Research, 16 April 2013Google Scholar
  37. 37.
    F.C. Campbell, Introduction to composite materials, Chapter 1 in Structural Composite Materials, ASM International (2010)Google Scholar
  38. 38.
  39. 39.
  40. 40.
    G.C. Murphy, B.J. Furhmann, Wide chord fan blade, US Patent US 5141400 A, Aug 1992Google Scholar
  41. 41.
    S.L. Simon, G.B. McKenna, O. Sindt, Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation. J. Appl. Poly. Sci. 76, 495–508 (2000)CrossRefGoogle Scholar
  42. 42.
    P. Prasatya, G.B. McKenna, S.L. Simon, A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: effects of processing parameters. J. Comp. Mat. 35, 826–848 (2001)CrossRefGoogle Scholar
  43. 43.
    R.K. Upadhyay, R.K. Pandy, Design of manufacturing process for complex composite, in SEM (Society for Experimental Mechanics) Conference, 1999Google Scholar
  44. 44.
    R.K. Upadhyay, S. Sinha, W Bushko, B. Kirpatrick, Manufacturing process simulation, Progress Report GE-Boeing collaboration Program, Jan 2006Google Scholar
  45. 45.
    R.K. Upadhyay, Uniqueness of composites from manufacturing perspective, in Composite Manufacturing Symposium, GE Global Research, April 16, 2013Google Scholar
  46. 46.
    T. Lednicky, Case study of successful design manufacturing interaction, in Composite Manufacturing Symposium, GE Global Research, April 16, 2013Google Scholar
  47. 47.
  48. 48.
    J. Sudworth, A.R. Tiley, Sodium Sulfur Battery (Springer, 1986)Google Scholar
  49. 49.
    A.V. Virkar, G.R. Miller, R.S. Gordon, Resistivity-microstructure relations in lithia-stabilized polycrystalline β′′-alumina. J. Am. Ceram. Soc. 61(5-6), 250–252 (1978)CrossRefGoogle Scholar
  50. 50.
    A.V. Virkar, J. Jue, K.Z. Fung, Alkali-Metal-β- and β′′-alumina and gallate polycrystalline ceramics and fabrication by a vapor phase method, US Patents 6,117,807 (2000), 6,537,940 B1 (2003), 6,632,763 B2 (2003)Google Scholar
  51. 51.
    T. Oshima, M. Kajita, A. Okuno, Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol. 1(3), 269–276 (2004)CrossRefGoogle Scholar
  52. 52.
    J.L. Sudworth, P. Barrow, W. Dong, B. Dunn, G.C. Farrington, J.O. Thomas, Toward commercialization of the β-alumina family of ionic conductors. MRS Bull. 25(3), 22–26 (2000)CrossRefGoogle Scholar
  53. 53.
    J.L. Sudworth, The sodium/nickel chloride (ZEBRA) battery. J. Power Sources 149–63 (2001)Google Scholar
  54. 54.
    J.S. Reed, Principles of Ceramic Processing, 2nd edn. (John Wiley & Sons Inc, New York, 1995), pp. 379–382Google Scholar
  55. 55.
    S.D. Salman, M. Hounslow, J.P.K. Seville, Granulation (Elsevier Science, 2006)Google Scholar
  56. 56.
    D.M. Parikh (ed.), Handbook of Pharmaceutical Granulation Technology, 3rd edn. (Informa Healthcare USA Inc, New York, 2010)Google Scholar
  57. 57.
    N. Ouchiyama, T. Tanaka, The probability of coalescence in granulation kinetics. Ind. Eng. Chem., Process Des. Dev. 14(3), 286–289 (1975)Google Scholar
  58. 58.
    M. Annunziata, S. Biller, The future of work. GE White Paper. http://files.publicaffairs.geblogs.com/files/2014/04/AM_II_FOW_WhitePaper_FINAL-1.pdf. Accessed April 2014

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gregory Corman
    • 1
  • Ram Upadhyay
    • 1
  • Shatil Sinha
    • 1
  • Sean Sweeney
    • 1
  • Shanshan Wang
    • 1
  • Stephan Biller
    • 1
  • Krishan Luthra
    • 1
    Email author
  1. 1.General Electric Global ResearchNiskayunaUSA

Personalised recommendations