Advertisement

The Procter and Gamble Company: Current State and Future Needs in Materials Modeling

  • Russell H. DeVaneEmail author
  • Matthew S. Wagner
  • Bruce P. Murch
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 224)

Abstract

New material development and commercial application is often quite complex due to the material properties and multiple transformations materials undergo in the supply chain, manufacturing process, and distribution of the finished product. In the fast-moving consumer goods industry of personal and household care products, these complexities are particularly acute due to the focus on and use of “commodity” materials that, at times, have significant variability in material properties. These materials are often formulated into complex liquids or assembled products, which undergo multiple transformations during making and can further undergo additional changes during distribution and use by the consumer (some desired, some not). At each stage of development, manufacturing, and distribution, materials models can be tremendously helpful in material and process selection and optimization. This chapter provides an overview of the current state-of-the-art in materials modeling as applied to the soft materials typically used in household and personal care products, with particular focus on modeling tools that span the length and time scales most relevant for modeling. We review the tools and methods in materials modeling and provide several examples where these tools have been used to guide the development of new materials. We conclude with commentary on additional advancements needed to drive practical application of these modeling tools more broadly for material development.

Keywords

Molecular Dynamic Simulation Dissipative Particle Dynamic Polymer Dynamic Glassy Amorphous Polymer Dynamic Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, M.L. Klein, A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105(19), 4464–4470 (2001)CrossRefGoogle Scholar
  2. 2.
    J.C. Shelley, M.Y. Shelley, Computer simulation of surfactant solutions. Curr. Opin. Colloid Interface Sci. 5, 101–110 (2000)CrossRefGoogle Scholar
  3. 3.
    X. He, W. Shinoda, R. DeVane, K.L. Anderson, M.L. Klein, Paramaterization of a coarse-grained model for linear alkylbenzene sulfonate surfactants and molecular dynamics studies of their self-assembly in aqueous solution. Chem. Phys. Lett. 487, 71–76 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, J.A. Wallace, P.H. Koenig, J.K. Shen, Molecular dynamics simulations of ionic and nonionic surfactant micelles with a generalized born implicit-solvent model. J. Comput. Chem. 32(11), 2348–2358 (2011)CrossRefGoogle Scholar
  5. 5.
    B.H. Morrow, P.H. Koenig, J.K. Shen, Atomistic simulations of pH-dependent self-assembly of micelle and bilayer from fatty acids. J. Chem. Phys. 137(19), 194902 (2012)CrossRefGoogle Scholar
  6. 6.
    W. Shinoda, R. DeVane, M.L. Klein, Computer simulation studies of self-assembling macromolecules. Curr. Opin. Struct. Biol. 22(2), 175–186 (2012)CrossRefGoogle Scholar
  7. 7.
    B.H. Morrow, P.H. Koenig, J.K. Shen, Self-assembly and bilayer-micelle transition of fatty acids studied by replica-exchange constant ph molecular dynamics. Langmuir 29(48), 14823–14830 (2013)CrossRefGoogle Scholar
  8. 8.
    G. Fiorin, M.L. Klein, R. DeVane, W. Shinoda, Computer simulation of self-assembling macromolecules. Adv. Polym. Sci. 262, 93–108 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Tang, P.H. Koenig, R.G. Larson, Molecular dynamics simulations of sodium dodecyl sulfate micelles in water—the effect of the force field. J. Phys. Chem. B 118(14), 3864–3880 (2014)CrossRefGoogle Scholar
  10. 10.
    R.C. Runnebaum, E.J. Maginn, Molecular dynamics simulations of alkanes in the zeolite silicalite: Evidence for resonant diffusion effects. J. Phys. Chem. B 101(33), 6394–6408 (1997)CrossRefGoogle Scholar
  11. 11.
    C. Wijmans, P. Linse, Monte Carlo simulations of the adsorption of amphiphilic oligomers at hydrophobic interfaces. J. Chem. Phys. 106(1), 328–338 (1997)CrossRefGoogle Scholar
  12. 12.
    D.H. Melik, Adsorption from a well-stirred solution of finite volume. I. Linear adsorption kinetics through a stagnant boundary layer. J. Colloid Interface Sci. 138(2), 397–413 (1990)CrossRefGoogle Scholar
  13. 13.
    H. Furuya, M. Mondello, H.J. Yang, R.J. Roe, R.W. Erwin, C.C. Han, S.D. Smith, Molecular dynamics simulation of atactic polystyrene. 2. Comparison with neutron scattering data. Macromolecules 27(20), 5674–5680 (1994)CrossRefGoogle Scholar
  14. 14.
    D.C. Fleming, C. Morrow, C.W. Clarke, C.E. Bird, Finite element simulation of delamination with application to crashworthy design. J. Am. Helicopter Soc. 53(3), 267–281 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Kaushik, A. Waas, E. Arruda, A constitutive model for finite deformation response of layered polyurethane-montmorillonite nanocomposites. Mech. Mater. 43(4), 186–193 (2011)CrossRefGoogle Scholar
  16. 16.
    F. Karadagli, D. McAvoy, B. Rittmann, Development of a mathematical model for physical disintegration of flushable consumer products in wastewater systems. Water Environ. Res. 81(5), 459–465 (2009)CrossRefGoogle Scholar
  17. 17.
    H.J.G. Diersch, V. Clausnitzer, V. Myrnyy, R. Rosati, M. Schmidt, H. Beruda, B.J. Ehrnsperger, R. Virgilio, Modeling unsaturated flow in absorbent swelling porous media: Part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010)CrossRefGoogle Scholar
  18. 18.
    H.J.G. Diersch, V. Clausnitzer, V. Myrnyy, R. Rosati, M. Schmidt, H. Beruda, B.J. Ehrnsperger, R. Virgilio, Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 2. Numerical Simulation. Transp. Porous Media 86(3), 753–776 (2011)CrossRefGoogle Scholar
  19. 19.
    J.P. Hecht, C.J. King, Spray drying: Influence of developing drop morphology on drying rates and retention of volatile substances. 2. Modeling. Ind. Eng. Chem. Res. 39(6), 1766–1774 (2000)CrossRefGoogle Scholar
  20. 20.
    A. Braumann, M.J. Goodson, M. Kraft, P.R. Mort, Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction. Chem. Eng. Sci. 62(17), 4717–4728 (2007)CrossRefGoogle Scholar
  21. 21.
    D. Ronen, C.F.W. Sanders, H.S. Tan, P.R. Mort, F.J. Doyle, Predictive modeling of key process variables in granulation processes based on dynamic partial least squares. IFAC Proc. 7, 411–416 (2009)Google Scholar
  22. 22.
    C.S. Handscomb, M. Kraft, A.E. Bayly, A new model for the drying of droplets containing suspended solids after shell formation. Chem. Eng. Sci. 64(2), 228–246 (2009)CrossRefGoogle Scholar
  23. 23.
    C.S. Handscomb, M. Kraft, A.E. Bayly, A new model for the drying of droplets containing suspended solids. Chem. Eng. Sci. 64(4), 628–637 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Braumann, M. Kraft, P.R. Mort, Parameter estimation in a multidimensional granulation mode. Powder Technol. 197(3), 196–210 (2010)CrossRefGoogle Scholar
  25. 25.
    E. Supuk, A. Hassanpour, H. Ahmadian, M. Ghadiri, T. Matsuyama, Tribo-electrification and associated segregation of pharmaceutical bulk powders. KONA Powder Part. J. 29, 208–223 (2011)CrossRefGoogle Scholar
  26. 26.
    D. Ronen, C.F.W. Sanders, H.S. Tan, P.R. Mort, F.J. Doyle, Predictive dynamic modeling of key process variables in granulation processes using partial least squares approach. Ind. Eng. Chem. Res. 50(3), 1419–1426 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Clark, P. Mort, R. Behringer, Coarse graining for an impeller-driven mixer system. Granular Matter 14(2), 283–288 (2012)CrossRefGoogle Scholar
  28. 28.
    V. Vidyapati, S. Subramaniam, Granular flow in silo discharge: discrete element method simulations and model assessment. Ind. Eng. Chem. Res. 52(36), 13171–13182 (2013)CrossRefGoogle Scholar
  29. 29.
    S.C. Thakur, H. Ahmadian, J. Sun, J.Y. Ooi, An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology 12(1), 2–12 (2014)CrossRefGoogle Scholar
  30. 30.
    R.B. Pandey, K.L. Anderson, B.L. Farmer, Multiscale dynamics of an interacting sheet by a bond-fluctuating Monte Carlo simulation. J. Polym. Sci., Part B: Polym. Phys. 44(18), 2512–2523 (2006)CrossRefGoogle Scholar
  31. 31.
    R.B. Pandey, K.L. Anderson, B.L. Farmer, Exfoliation of stacked sheets: Effects of temperature, platelet size, and quality of solvent by a Monte Carlo simulation. J. Polym. Sci., Part B: Polym. Phys. 44(24), 3580–3589 (2006)CrossRefGoogle Scholar
  32. 32.
    C.Y. Yang, Y. Ding, D. York, W. Broeckx, Numerical simulation of sedimentation of microparticles using the discrete particle method. Particuology 6(1), 38–49 (2008)CrossRefGoogle Scholar
  33. 33.
    C.C. Chiu, R.H. DeVane, M.L. Klein, W. Shinoda, P.B. Moore, S.O. Nielsen, Effect of carboxylation on carbon nanotube aqueous dispersibility: A predictive coarse-grained molecular dynamics approach. J. Phys. Chem. C 116(43), 23102–23106 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Yang, A. Corona, M.A. Henson, Experimental investigation and population balance equation modeling of solid lipid nanoparticle aggregation dynamics. J. Colloid Interface Sci. 374(1), 297–307 (2012)CrossRefGoogle Scholar
  35. 35.
    R. Mercade-Prieto, B. Nguyen, R. Allen, D. York, J.A. Preece, T.E. Goodwin, Z. Zhang, Determination of the elastic properties of single microcapsules using micromanipulation and finite element modeling. Chem. Eng. Sci. 66(10), 2042–2049 (2011)CrossRefGoogle Scholar
  36. 36.
    D.T. Stanton, Development of a quantitative structure-property relationship model for estimating normal boiling points of small multifunctional organic molecules. J. Chem. Inf. Comput. Sci. 40(1), 81–90 (2000)CrossRefGoogle Scholar
  37. 37.
    D.T. Stanton, S. Dimitrov, V. Grancharov, O.G. Mekenyan, Charged partial surface area (CPSA) descriptors QSAR applications. SAR QSAR Environ. Res. 13(2), 341–351 (2002)CrossRefGoogle Scholar
  38. 38.
    D.T. Stanton, On the Physical Interpretation of QSAR Models. J. Chem. Inf. Comput. Sci. 43(5), 1423–1433 (2003)CrossRefGoogle Scholar
  39. 39.
    R. Guha, D. Stanton, P. Jurs, Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases. J. Chem. Inf. Model. 45(4), 1109–1121 (2005)CrossRefGoogle Scholar
  40. 40.
    J. Jaworska, N. Nikolova-Jeliazkova, T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review. ATLA Altern. Lab. Anim. 33(5), 445–459 (2005)Google Scholar
  41. 41.
    D.T. Stanton, On the importance of topological descriptors in understanding structure-property relationships. J. Comput. Aided Mol. Des. 22, 441–460 (2008)CrossRefGoogle Scholar
  42. 42.
    D.T. Stanton, QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr. Comput. Aided Drug Des. 8(2), 107–127 (2012)CrossRefGoogle Scholar
  43. 43.
    J.C. Phillips, W.B. Gibson, J. Yam, C.L. Alden, G.C. Hard, Survey of the QSAR and in vitro approaches for developing non-animal methods to supersede the in vivo LD50 test. Food Chem. Toxicol. 28(5), 375–394 (1990)CrossRefGoogle Scholar
  44. 44.
    J.D. McKinney, A. Richard, C. Waller, M.C. Newman, F. Gerberick, The practice of structure activity relationships (SAR) in toxicology. Toxicol. Sci. 56(1), 8–17 (2000)CrossRefGoogle Scholar
  45. 45.
    A. Kulkarni, A.J. Hopfinger, R. Osborne, L.H. Bruner, E.D. Thompson, Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol. Sci. 59(2), 335–345 (2001)CrossRefGoogle Scholar
  46. 46.
    K. Kodithala, A.J. Hopfinger, E.D. Thompson, M.K. Robinson, Prediction of skin irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol. Sci. 66(2), 336–346 (2002)CrossRefGoogle Scholar
  47. 47.
    J.S. Jaworska, M. Comber, C. Auer, C.J. Van Leeuwen, Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. Environ. Health Perspect. 111(10), 1358–1360 (2003)CrossRefGoogle Scholar
  48. 48.
    N. Nikolova-Jeliazkova, J. Jaworska, An approach to determining applicability domains for QSAR group contribution models: An analysis of SRC KOWWIN. ATLA Altern. Lab. Anim. 33(5), 461–470 (2005)Google Scholar
  49. 49.
    G. Patlewicz, A.O. Aptula, E. Uriarte, D.W. Roberts, P.S. Kern, G.F. Gerberick, I. Kimber, R.J. Dearman, C.A. Ryan, D.A. Basketter, An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential. SAR QSAR Environ. Res. 18, 515–541 (2007)CrossRefGoogle Scholar
  50. 50.
    Y. Li, D. Pan, J. Liu, P.S. Kern, G.F. Gerberick, A.J. Hopfinger, Y.J. Tseng, Categorical QSAR models for skin sensitization based upon local lymph node assay classification measures Part 2: 4D-fingerprint three-state and two-2-state logistic regression models. Toxicol. Sci. 99(2), 532–544 (2007)CrossRefGoogle Scholar
  51. 51.
    Y. Li, Y.J. Tseng, D. Pan, J. Liu, P.S. Kern, G.F. Gerberick, A.J. Hopfinger, 4D-fingerprint categorical QSAR models for skin sensitization based on the classification of local lymph node assay measures. Chem. Res. Toxicol. 20(1), 114–128 (2007)CrossRefGoogle Scholar
  52. 52.
    G. Patlewicz, S.D. Dimitrov, L.K. Low, P.S. Kern, G.D. Dimitrova, M.I.H. Comber, A.O. Aptula, R.D. Phillips, J. Niemelä, C. Madsen, E.B. Wedebye, D.W. Roberts, P.T. Bailey, O.G. Mekenyan, TIMES-SS-A promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Regul. Toxicol. Pharmacol. 48(2), 225–239 (2007)CrossRefGoogle Scholar
  53. 53.
    J. Liu, P.S. Kern, G.F. Gerberick, O.A. Santos-Filho, E.X. Esposito, A.J. Hopfinger, Y.J. Tseng, Categorical QSAR models for skin sensitization based on local lymph node assay measures and both ground and excited state 4D-fingerprint descriptors. J. Comput. Aided Mol. Des. 22, 345–366 (2008)CrossRefGoogle Scholar
  54. 54.
    C.E. Cowan, T.W. Federle, R.J. Larson, T.C. Feijtel, Impact of biodegradation test methods on the development and applicability of biodegradation QSARS. SAR QSAR Environ. Res. 5(1), 37–49 (1996)CrossRefGoogle Scholar
  55. 55.
    D.J. Versteeg, D.T. Stanton, M.A. Pence, C. Cowan, Effects of surfactants on the rotifer, Brachionus calyciflorus, in a chronic toxicity test and in the development of QSARs. Environ. Toxicol. Chem. 16(5), 1051–1058 (1997)CrossRefGoogle Scholar
  56. 56.
    L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 111(10), 1361–1375 (2003)CrossRefGoogle Scholar
  57. 57.
    S.H. Jackson, C.E. Cowan-Ellsberry, G. Thomas, Use of quantitative structural analysis to predict fish bioconcentration factors for pesticides. J. Agric. Food Chem. 57(3), 958–967 (2009)CrossRefGoogle Scholar
  58. 58.
    K. Binder, A. Milchev, Off-lattice Monte Carlo methods for coarse-grained models of polymeric materials and selected applications. J. Comput. Mater. Des. 9, 33–74 (2002)CrossRefGoogle Scholar
  59. 59.
    G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Ming, B. Chen, J. Ning, J. Ahn, A.M. Gronenborn, K. Schulten, C. Aiken, P. Zhang, Mature HIV-1 capsid structure by cryo-eletron microscopy and all-atom molecular dynamcs. Nature 497(7451), 643–646 (2013)CrossRefGoogle Scholar
  60. 60.
    K. Kremer, G.S. Grest, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 92(8), 5057 (1990)CrossRefGoogle Scholar
  61. 61.
    R. Faller, Automatic coarse graining of polymers. Polymer (Guildf) 45(11), 3869–3876 (2004)CrossRefGoogle Scholar
  62. 62.
    P.T. Underhill, P.S. Doyle, On the coarse-graining of polymers into bead-spring chains. J. Nonnewton. Fluid Mech. 122(1–3), 3–31 (2004)CrossRefGoogle Scholar
  63. 63.
    F. Müller-Plathe, Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3(9), 755–769 (2002)CrossRefGoogle Scholar
  64. 64.
    J.T. Padding, W.J. Briels, Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. J. Phys.: Condens. Matter 23(23), 233101 (2011)Google Scholar
  65. 65.
    P. Carbone, C. Avendaño, Coarse-grained methods for polymeric materials: enthalpy- and entropy-driven models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4(1), 62–70 (2014)CrossRefGoogle Scholar
  66. 66.
    A.J. Clark, J. McCarty, I.Y. Lyubimov, M.G. Guenza, thermodynamic consistency in variable-level coarse graining of polymeric liquids. Phys. Rev. Lett. 109(16), 168301 (2012)CrossRefGoogle Scholar
  67. 67.
    A.J. Clark, J. McCarty, M.G. Guenza, Effective potentials for representing polymers in melts as chains of interacting soft particles. J. Chem. Phys. 139(12), 124906 (2013)CrossRefGoogle Scholar
  68. 68.
    J.-L. Barrat, J. Baschnagel, A.V. Lyulin, Molecular dynamics simulations of glassy polymers. Soft Matter 6(15), 3430 (2010)CrossRefGoogle Scholar
  69. 69.
    K. Binder, W. Paul, Monte Carlo simulations of polymer dynamics : recent advances basics of the monte carlo method in statistical. J. Polym. Sci., Part B: Polym. Phys. 35, 1–31 (1997)CrossRefGoogle Scholar
  70. 70.
    G.M. Odegard, Prediction of Mechanical Properties of Polymers with Various Force Fields,” no. April, pp. 1–12, 2005Google Scholar
  71. 71.
    S.C. Glotzer, W. Paul, Molecular and mesoscale simulation methods for polymer materials. Annu. Rev. Mater. Res. 32(1), 401–436 (2002)CrossRefGoogle Scholar
  72. 72.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhys. Lett. 19(3), 155 (1992)CrossRefGoogle Scholar
  73. 73.
    R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107(11), 4423–4435 (1997)CrossRefGoogle Scholar
  74. 74.
    R.D. Groot, T.J. Madden, D.J. Tildesley, On the role of hydrodynamic interactions in block copolymer microphase separation. J. Chem. Phys. 110(19), 9739 (1999)CrossRefGoogle Scholar
  75. 75.
    S. Kumar, R.G. Larson, Brownian dynamics simulations of flexible polymers with spring–spring repulsions. J. Chem. Phys. 114(15), 6937 (2001)CrossRefGoogle Scholar
  76. 76.
    F. Goujon, P. Malfreyt, D.J. Tildesley, Mesoscopic simulation of entanglements using dissipative particle dynamics: application to polymer brushes. J. Chem. Phys. 129(3), 034902 (2008)CrossRefGoogle Scholar
  77. 77.
    S. Li, W.K. Liu, Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1 (2002)CrossRefGoogle Scholar
  78. 78.
    M.B. Liu, G.R. Liu, Smoothed particle hydrodynamics (sph): An overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010)CrossRefGoogle Scholar
  79. 79.
    P. Español, M. Revenga, Smoothed dissipative particle dynamics. Phys. Rev. E 67(2), 026705 (2003)CrossRefGoogle Scholar
  80. 80.
    P.S. Doyle, P.T. Underhill, Brownian Dynamics Simulations of Polymers and Soft Matter, pp. 2619–2630, 2005Google Scholar
  81. 81.
    C. Cruz, F. Chinesta, G. Régnier, Review on the Brownian Dynamics Simulation of Bead-Rod-Spring Models Encountered in Computational Rheology. Arch. Comput. Methods Eng. 19(2), 227–259 (2012)CrossRefGoogle Scholar
  82. 82.
    G.H. Fredrickson, The equilibrium theory of inhomogeneous polymers (Oxford University Press, Oxford, 2006)Google Scholar
  83. 83.
    J.G.E.M. Fraaije, B.A.C. Van Vlimmeren, N.M. Maurits, M. Postma, O.A. Evers, C. Hoffmann, P. Altevogt, I Introduction, A General, “The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys. 106(10), 4260–4269 (2001)CrossRefGoogle Scholar
  84. 84.
    P. Altevogt, O.A. Evers, J.G.E.M. Fraaije, N.M. Maurits, B.A.C. Van Vlimmeren, J. Mol. Struct. (Theochem) 463, 139–143 (1999)CrossRefGoogle Scholar
  85. 85.
    V. Ganesan, G.H. Fredrickson, Field-theoretic polymer simulations. Europhys. Lett. 55(6), 814 (2001)CrossRefGoogle Scholar
  86. 86.
    A.M. Stoneham, J.H. Harding, Not too big, not too small: the appropriate scale. Nat. Mater. 2(2), 77–83 (2003)CrossRefGoogle Scholar
  87. 87.
    T. Gates, G.M. Odegard, S. Frankland, T. Clancy, Computational materials: Multi-scale modeling and simulation of nanostructured materials. Compos. Sci. Technol. 65(15–16), 2416–2434 (2005)CrossRefGoogle Scholar
  88. 88.
    B. Ensing, S.O. Nielsen, P.B. Moore, M.L. Klein, M. Parrinello, Energy conservation in adaptive hybrid atomistic/coarse-grain molecular dynamics. J. Chem. Theory Comput. 3(3), 1100–1105 (2007)CrossRefGoogle Scholar
  89. 89.
    S.O. Nielsen, P.B. Moore, B. Ensing, Adaptive Multiscale Molecular Dynamics of Macromolecular Fluids. Phys. Rev. Lett. 105(23), 237802 (2010)CrossRefGoogle Scholar
  90. 90.
    M. Praprotnik, L.D. Site, K. Kremer, Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008)CrossRefGoogle Scholar
  91. 91.
    A.J. Rzepiela, M. Louhivuori, C. Peter, S.J. Marrink, Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys. Chem. Chem. Phys. 13(22), 10437–10448 (2011)CrossRefGoogle Scholar
  92. 92.
    F.F. Abraham, J.Q. Broughton, N. Bernstein, Spanning the length scales in dynamic simulation. Am. Inst. Phys. 12(6), 538 (1998)Google Scholar
  93. 93.
    W.A. Curtin, R.E. Miller, Atomistic / continuum coupling in computational. Model. Simul. Mater. Sci. Eng. 11, R33 (2003)CrossRefGoogle Scholar
  94. 94.
    S.P. Xiao, T. Belytschko, A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193(17–20), 1645–1669 (2004)CrossRefGoogle Scholar
  95. 95.
    W.K. Liu, H.S. Park, D. Qian, E.G. Karpov, H. Kadowaki, G.J. Wagner, Bridging scale methods for nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 195(13–16), 1407–1421 (2006)CrossRefGoogle Scholar
  96. 96.
    B. Eidel, A. Stukowski, A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57(1), 87–108 (2009)CrossRefGoogle Scholar
  97. 97.
    B. Liu, Y. Huang, H. Jiang, S. Qu, K.C. Hwang, The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193(17–20), 1849–1864 (2004)CrossRefGoogle Scholar
  98. 98.
    S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 64(4), 851–878 (1991)CrossRefGoogle Scholar
  99. 99.
    L.E. Shilkrot, R.E. Miller, W.A. Curtin, Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52(4), 755–787 (2004)CrossRefGoogle Scholar
  100. 100.
    S. Badia, M. Parks, P. Bochev, M. Gunzburger, R. Lehoucq, On atomistic-to-continuum coupling by blending. Multiscale Model. Simul. 7(1), 381–406 (2008)CrossRefGoogle Scholar
  101. 101.
    Q. Yang, E. Biyikli, A.C. To, Multiresolution molecular mechanics: Statics. Comput. Methods Appl. Mech. Eng. 258, 26–38 (2013)CrossRefGoogle Scholar
  102. 102.
    M. Laso, H.C. Öttinger, Calculation of viscoelastic flow using molecular models: the connffessit approach. J. Nonnewton. Fluid Mech. 47, 1–20 (1993)CrossRefGoogle Scholar
  103. 103.
    K. Feigl, M. Laso, H.C. Ottinger, CONNFFESSIT approach for solving a two-dimensional viscoelastic fluid problem. Macromolecules 28(9), 3261–3274 (1995)CrossRefGoogle Scholar
  104. 104.
    M.C. Araújo, J.P. Martins, S.M. Mirkhalaf, S. Lanceros-Mendez, F.M.A. Pires, R. Simoes, Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation. Appl. Surf. Sci. 306, 37–46 (2014)CrossRefGoogle Scholar
  105. 105.
    I. Noda, M.M. Satkowski, A.E. Dowrey, C. Marcott, Polymer alloys of nodax copolymers and poly (lactic acid). Macromol. Biosci. 4, 269–275 (2004)CrossRefGoogle Scholar
  106. 106.
    I. Noda, S.B. Lindsey, D. Caraway, Nodax TM Class PHA Copolymers : Their Properties and Applications, vol. 14, (2010)Google Scholar
  107. 107.
    H. Alata, T. Aoyama, Y. Inoue, Effect of aging on the mechanical properties of poly(3-hydroxybutyrate- co -3-hydroxyhexanoate). Macromolecules 40(13), 4546–4551 (2007)CrossRefGoogle Scholar
  108. 108.
    D. Brown, J.H.R. Clarke, Molecular dynamics computer simulation of polymer fiber microstructure. J. Chem. Phys. 84(5), 2858 (1985)CrossRefGoogle Scholar
  109. 109.
    D. Brown, J.H.R. Clarke, Molecular dynamics simulation of an amorphous polymer under tension. 1. phenomenology. Macromolecules 24, 2075–2082 (1991)CrossRefGoogle Scholar
  110. 110.
    M. Parrinello, A. Rahman, Strain fluctuations and elastic constants. J. Chem. Phys. 76(5), 2662–2666 (1982)CrossRefGoogle Scholar
  111. 111.
    D.N. Theodorou, U.W. Suter, Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 19, 139–154 (1986)CrossRefGoogle Scholar
  112. 112.
    J.R. Ray, Elastic constants and statistical ensembles in molecular dynamics (North-Holland, Amsterdam, 1988)Google Scholar
  113. 113.
    A.V. Lyulin, N.K. Balabaev, M.A. Mazo, M.A.J. Michels, Molecular dynamics simulation of uniaxial deformation of glassy amorphous atactic polystyrene. Macromolecules 37(23), 8785–8793 (2004)CrossRefGoogle Scholar
  114. 114.
    A.V. Lyulin, B. Vorselaars, M.A. Mazo, N.K. Balabaev, M.A.J. Michels, Strain softening and hardening of amorphous polymers: Atomistic simulation of bulk mechanics and local dynamics. Europhys. Lett. 71(4), 618–624 (2005)CrossRefGoogle Scholar
  115. 115.
    F.M. Capaldi, M. Boyce, G. Rutledge, Enhanced mobility accompanies the active deformation of a glassy amorphous polymer. Phys. Rev. Lett. 89(17), 175505 (2002)CrossRefGoogle Scholar
  116. 116.
    F.M. Capaldi, M.C. Boyce, G.C. Rutledge, Molecular response of a glassy polymer to active deformation. Polymer (Guildf) 45(4), 1391–1399 (2004)CrossRefGoogle Scholar
  117. 117.
    J. Rottler, M. Robbins, Yield conditions for deformation of amorphous polymer glasses. Phys. Rev. E 64(5), 051801 (2001)CrossRefGoogle Scholar
  118. 118.
    R.S. Hoy, M.O. Robbins, Strain Hardening of Polymer Glasses: Entanglements, Energetics, and Plasticity, vol. 21218, (2008)Google Scholar
  119. 119.
    V. Sudarkodi, S. Basu, Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers. Int. J. Plast 56, 139–155 (2014)CrossRefGoogle Scholar
  120. 120.
    K. Yoshimoto, T. Jain, K. Van Workum, P. Nealey, J. de Pablo, Mechanical heterogeneities in model polymer glasses at small length scales. Phys. Rev. Lett. 93(17), 175501 (2004)CrossRefGoogle Scholar
  121. 121.
    K. Van Workum, J.J. De Pablo, Local elastic constants in thin films of an FCC crystal. Phys. Rev. E 67(3), 31601 (2002)CrossRefGoogle Scholar
  122. 122.
    K. Van Workum, J.J. De Pablo, U.V Wisconsin-madison, Computer simulation of the mechanical nanostructures, pp. 3–8 (2003)Google Scholar
  123. 123.
    E. Riccardi, M.C. Böhm, F. Müller-Plathe, Molecular dynamics method to locally resolve poisson’s ratio: mechanical description of the solid–soft-matter interphase. Phys. Rev. E 86(3), 036704 (2012)CrossRefGoogle Scholar
  124. 124.
    G. Odegard, Constitutive modeling of nanotube–reinforced polymer composites. Compos. Sci. Technol. 63(11), 1671–1687 (2003)CrossRefGoogle Scholar
  125. 125.
    S. Frankland, The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)CrossRefGoogle Scholar
  126. 126.
    M. Griebel, J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput. Methods Appl. Mech. Eng. 193, 1773–1788 (2004)CrossRefGoogle Scholar
  127. 127.
    G.M. Odegard, T.C. Clancy, T.S. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer (Guildf) 46(2), 553–562 (2005)CrossRefGoogle Scholar
  128. 128.
    E.B. Stukalin, J.F. Douglas, K.F. Freed, Plasticization and antiplasticization of polymer melts diluted by low molar mass species. J. Chem. Phys. 132, 84504 (2010)CrossRefGoogle Scholar
  129. 129.
    R.A. Riggleman, K. Yoshimoto, J. Douglas, J. de Pablo, Influence of confinement on the fragility of antiplasticized and pure polymer films. Phys. Rev. Lett. 97(4), 045502 (2006)CrossRefGoogle Scholar
  130. 130.
    S.P. Delcambre, R.A. Riggleman, J.J. de Pablo, P.F. Nealey, Mechanical properties of antiplasticized polymer nanostructures. Soft Matter 6(11), 2475 (2010)CrossRefGoogle Scholar
  131. 131.
    Y. Xu, J. Feng, H. Liu, Y. Hu, Microphase separation of graft-diblock copolymer by dissipative particle dynamics simulation. Mol. Simul. 34(5), 559–565 (2008)CrossRefGoogle Scholar
  132. 132.
    X. Li, J. Guo, Y. Liu, H. Liang, Microphase separation of diblock copolymer poly(styrene-b-isoprene): A dissipative particle dynamics simulation study. J. Chem. Phys. 130(7), 074908 (2009)CrossRefGoogle Scholar
  133. 133.
    J.-J. Wang, Z.-Z. Li, X.-P. Gu, L.-F. Feng, C.-L. Zhang, G.-H. Hu, A dissipative particle dynamics study on the compatibilizing process of immiscible polymer blends with graft copolymers. Polymer (Guildf) 53(20), 4448–4454 (2012)CrossRefGoogle Scholar
  134. 134.
    A.A. Gavrilov, Y.V. Kudryavtsev, P.G. Khalatur, A.V. Chertovich, Microphase separation in regular and random copolymer melts by DPD simulations. Chem. Phys. Lett. 503(4–6), 277–282 (2011)CrossRefGoogle Scholar
  135. 135.
    Y. Zhu, Z. Ma, Y. Li, J. Cui, W. Jiang, Monte Carlo simulation of the compatibility of graft copolymer compatibilized two incompatible homopolymer blends: Effect of graft structure. J. Appl. Polym. Sci. 105(3), 1591–1596 (2007)CrossRefGoogle Scholar
  136. 136.
    L. Zhou, J. Zhang, J. Fang, B. Sun, Ordered microstructures self-assembled from A 2 m + 1 B m C m comblike copolymers. J. Polym. Res. 18(5), 1053–1058 (2010)CrossRefGoogle Scholar
  137. 137.
    K.C. Daoulas, M. Müller, Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations. J. Chem. Phys. 125(18), 184904 (2006)CrossRefGoogle Scholar
  138. 138.
    M. Muller, G.D. Smith, Phase separation in binary mixtures containing polymers: a quantitative comparison of single-chain-in-mean-field simulations and computer simulations of the corresponding multichain systems. J. Polym. Sci., Part B: Polym. Phys. 43(8), 934–958 (2005)CrossRefGoogle Scholar
  139. 139.
    N.M. Maurits, A.V. Zvelindovsky, G.J.A. Sevink, B.A.C. van Vlimmeren, J.G.E.M. Fraaije, Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach. J. Chem. Phys. 108(21), 9150 (1998)CrossRefGoogle Scholar
  140. 140.
    T. Honda, T. Kawakatsu, Hydrodynamic effects on the disorder-to-order transitions of diblock copolymer melts. J. Chem. Phys. 129(11), 114904 (2008)CrossRefGoogle Scholar
  141. 141.
    L. Zhang, A. Sevink, F. Schmid, Hybrid lattice boltzmann/dynamic self-consistent field simulations of microphase separation and vesicle formation in block copolymer systems. Macromolecules 44(23), 9434–9447 (2011)CrossRefGoogle Scholar
  142. 142.
    P. Sandhu, J. Zong, D. Yang, Q. Wang, On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation. J. Chem. Phys. 138(19), 194904 (2013)CrossRefGoogle Scholar
  143. 143.
    T. Visser, M. Wessling, When do sorption-induced relaxations in glassy polymers set in? Macromolecules 40(14), 4992–5000 (2007)CrossRefGoogle Scholar
  144. 144.
    S.P. Nalawade, F. Picchioni, L.P.B.M. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog. Polym. Sci. 31(1), 19–43 (2006)CrossRefGoogle Scholar
  145. 145.
    A.A. Gusev, U.W. Suter, Dynamics of small molecules in dense polymers subject to thermal motion. J. Chem. Phys. 99(3), 2228 (1993)CrossRefGoogle Scholar
  146. 146.
    T. Spyriouni, G.C. Boulougouris, D.N. Theodorou, Prediction of sorption of CO2 in glassy atactic polystyrene at elevated pressures through a new computational scheme. Macromolecules 42(5), 1759–1769 (2009)CrossRefGoogle Scholar
  147. 147.
    I. Cozmuta, M. Blanco, W.A.G. Iii, Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations. J. Phys. Chem. B 111(12), 3151–3166 (2007)CrossRefGoogle Scholar
  148. 148.
    O. Hölck, M. Böhning, M. Heuchel, M.R. Siegert, D. Hofmann, Gas sorption isotherms in swelling glassy polymers—detailed atomistic simulations. J. Memb. Sci. 428, 523–532 (2013)CrossRefGoogle Scholar
  149. 149.
    H. Abou-Rachid, L.-S. Lussier, S. Ringuette, X. Lafleur-Lambert, M. Jaidann, J. Brisson, On the correlation between miscibility and solubility properties of energetic plasticizers/polymer blends: modeling and simulation studies. Propellants, Explos. Pyrotech. 33(4), 301–310 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Russell H. DeVane
    • 1
    Email author
  • Matthew S. Wagner
    • 1
  • Bruce P. Murch
    • 1
  1. 1.The Procter & Gamble CompanyWest ChesterUSA

Personalised recommendations