Skip to main content

Corning Incorporated: Designing a New Future with Glass and Optics

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 224))

Abstract

Corning Incorporated is a world leader in glass and ceramic products, and has been innovating in these materials since 1851. The company sells component-level technical products that are integrated into systems made by its customers. In most cases, those systems are significantly more efficient or in some instances fundamentally enabled by the performance of the Corning product. Corning calls its products “keystone components” for this reason. Keystone components often result from a combination of both material and process innovations, which tend to be difficult for other companies to duplicate. Developing keystone components requires patient investment in R&D (both materials and process) over long periods of time, and depends upon a culture of innovation and dedication to fundamental understanding. We highlight in this chapter three different keystone components developed by Corning in the past two decades—Corning® Gorilla® Glass for touch-enabled displays, Epic® sensors for drug discovery, and ClearCurve® optical fiber. In each case we provide an overview of Corning’s contributions to each field, describe the areas of technical challenge that still need to be addressed by the research community, and link those to the skills and capabilities that are needed to ensure further success in each.

Gorilla®, Epic®, ClearCurve®, and nanoStructures® are trademarks of Corning Incorporated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Devitrification is the glass manufacturing term for crystallization—small crystals form in the glass, leading to opacity and mechanical degradation. Avoiding devitrification is one of the main goals in glassmaking. Devitrification can occur when the temperature of the glass goes below the liquidus temperature, defined as the lowest temperature at which crystals can be in equilibrium with their surrounding liquid—see C. Bergeron, S. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society, Columbus, OH (1984), p. 22. The liquidus viscosity is the viscosity of the glass at the liquidus temperature, and determines what forming processes can be used to make molten glass into useful objects such as bottles, bulbs, or precision sheet. If any static interface in the glass manufacturing system is in contact with molten glass at a temperature below the liquidus temperature, crystals will grow on that interface and pollute the pristine glass with crystalline inclusions. Above the liquidus temperature only the liquid phase is stable and the glass will never experience devitrification

    Google Scholar 

  2. J.E. Shelby, Introduction to Glass Science and Technology (The Royal Society of Chemistry, Cambridge, 2005), p. 191

    Google Scholar 

  3. J. Olcott, Chemical strengthening of glass: After more than 70 years of research, glasses can now be made strong enough to be bent sharply. Science 140(3572), 1189–1193 (1963)

    Article  Google Scholar 

  4. R. McMaster, D. Shetterly, A. Bueno, Annealed and tempered glass, in Engineered Materials Handbook, ed. by S. Schneider. Ceramics and Glasses, vol. 4 (ASM International, Ohio, 1991), pp. 453–459

    Google Scholar 

  5. W. Dumbaugh, Laminated glass, in Engineered Materials Handbook, ed. by S. Schneider. Ceramics and Glasses, vol 4 (ASM International, Ohio, 1991), pp. 423–426

    Google Scholar 

  6. E. Berger, Unbreakable and malleable glass. Naturwissenschaften 25, 79 (1924)

    Article  Google Scholar 

  7. R. Bartholomew, Ion-exchange, in Engineered Materials Handbook, ed. S. Schneider. Ceramics and Glasses, vol. 4 (ASM International, Ohio, 1991), pp. 460–463

    Google Scholar 

  8. G. Schulze, Experiments relating to the diffusion of silver into glass. Ann. Phys. 40, 335–367 (1913)

    Article  Google Scholar 

  9. S.D. Stookey, New high strength ion-exchange glass-ceramics. Corning Internal Report R-1990 June 29, 1960

    Google Scholar 

  10. S.D. Stookey, J.S. Olcott, H.M. Garfinkel, D.L. Rothermel, Ultra-high-strength glasses by ion exchange and surface crystallization. Technical Papers of the Sixth International Congress on Glass, Washington, D.C., 1962, pp. 397–411

    Google Scholar 

  11. S.S. Kistler, J. Phys. Chem. 34, 52 (1932)

    Google Scholar 

  12. P. Acloque, J. Tochon, Measurement of mechanical resistance of glass after reinforcement, in Symposium sur la resistance mecanique du verre et les moyens de l’ameliorer (Colloquium on Mechanical Strength of Glass and Ways of Improving It), pp. 687–704, Florence, Italy, 25–29 Sept 1961,. Published by Union Scientifique Continentale du Verre, Charleroi, Belgium, 1962. 1044 pp.; Ceram. Abstr., 1963, January, p. 31i

    Google Scholar 

  13. S.S. Kistler, J. Am. Ceram. Soc. 45(2), 59–68 (1962)

    Article  Google Scholar 

  14. M.E. Nordberg, E. Mochel, H.M. Garfinkel, J.S. Olcott, Strengthening by ion exchange. J. Am. Ceram. Soc. 47(5), 215–219 (1964)

    Article  Google Scholar 

  15. M.B.W. Graham, A.T. Shuldiner, Corning and the Craft of Innovation (Oxford University Press, Oxford, 2001), pp. 260–267

    Google Scholar 

  16. An isopipe is a trough made from refractory material that is used in the fusion down draw process pioneered by Corning—molten glass overflows both sides of the trough, forming a pristine sheet of glass underneath

    Google Scholar 

  17. A. Ellison, I.A. Cornejo, Glass substrates for liquid crystal displays. Int. J. Appl. Glass Sci. 1(1), 87–103 (2010)

    Article  Google Scholar 

  18. A. Ellison, S. Gomez, Down-drawable, chemically strengthened glass for cover plate. United States Patent No. 7,666,511

    Google Scholar 

  19. J.E. Shelby, Introduction to Glass Science and Technology (The Royal Society of Chemistry, Cambridge, 2005), p. 4

    Google Scholar 

  20. S. Rekhson, Viscoelasticity of Glass. in Glass: Science and Technology, ed. by D.R. Uhlmann, N.J. Kreidl, vol. 3 (Academic Press, New York, 1986), p. 4

    Google Scholar 

  21. M. Dejneka, A. Ellison, S. Gomez, Ion exchanged, fast cooled glasses. United States Patent No. 8,232,218

    Google Scholar 

  22. R. Doremus, Glass Science (Wiley, New York, 1973), p. 237

    Google Scholar 

  23. M.J. Dejneka, S. Gomez, Fining agents for silicate glasses. United States Patent No. 8,114,798

    Google Scholar 

  24. M.J. Dejneka, S. Gomez, Fining agents for silicate glasses. United States Patent No. 8,158,543

    Google Scholar 

  25. M. Dejneka, R. Morena, S. Gomez, A. Ellison, Glasses having improved toughness and scratch resistance. United States Patent No. 8,652,978

    Google Scholar 

  26. K.L. Barefoot, M.J. Dejneka, N. Shashidhar, S. Gomez, T.M. Gross, Crack and scratch resistant glass and enclosures made therefrom. United States Patent No. 8,586,492

    Google Scholar 

  27. M. Dejneka, A. Ellison, J. Mauro, Zircon compatible, ion exchangeable glass with high damage resistance. United States Patent No. 8,951,927

    Google Scholar 

  28. W. Höland, G.H. Beall, Glass Ceramic Technology, 2nd edn. (Wiley, Hoboken, 2012)

    Google Scholar 

  29. D.C. Swinney, J. Anthony, How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011)

    Article  Google Scholar 

  30. K. Strebhardt, A. Ullrich, Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008)

    Article  Google Scholar 

  31. F. Pammolli, L. Magazzini, M. Riccaboni, The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov. 10, 428–438 (2011)

    Article  Google Scholar 

  32. M. Rask-Andersen, M.S. Almén, H.B. Schiöth, Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011)

    Article  Google Scholar 

  33. A.L. Hopkins, Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690 (2008)

    Article  Google Scholar 

  34. M. Pacholec, J.E. Bleasdale, B. Chrunyk, D. Cunningham, D. Flynn, R.S. Garofalo et al., SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340–8351 (2010)

    Article  Google Scholar 

  35. H. Hu, H. Deng, Y. Fang, Label-free phenotypic profiling identified D-luciferin as a GPR35 agonist. PLoS ONE 7, e34934 (2012)

    Article  Google Scholar 

  36. G.D. Luker, K.E. Luker, Optical imaging: current applications and future directions. J. Nucl. Med. 49, 1–4 (2008)

    Article  Google Scholar 

  37. Y. Fang, Label-free cell-based assays with optical biosensors in drug discovery. Assays Drug Dev. Technol. 4, 583–595 (2006)

    Article  Google Scholar 

  38. R.A. Copeland, D.L. Pompliano, T.D. Meek, Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739 (2006)

    Article  Google Scholar 

  39. G. Li, A.M. Ferrie, Y. Fang, Label-free profiling of endogenous G protein-coupled receptors using a cell-based high throughput screening technology. JALA 11, 181–187 (2006)

    Google Scholar 

  40. A.M. Ferrie, Q. Wu, Y. Fang, Resonant waveguide grating imager for live cell sensing. Appl. Phys. Lett. 97, 223704 (2010)

    Article  Google Scholar 

  41. Y. Fang, A.M. Ferrie, N.H. Fontaine, J. Mauro, J. Balakrishnan, Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 91, 1925–1940 (2006)

    Article  Google Scholar 

  42. Y. Fang, Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J. Pharmacol. Tox. Methods 67, 69–81 (2013)

    Article  Google Scholar 

  43. Y. Fang, Label-free drug discovery. Front. Pharmacol. 5, 52 (2014)

    Article  Google Scholar 

  44. A.M. Ferrie, Q. Wu, O. Deichmann, Y. Fang, High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity. Appl. Phys. Lett. 104, 183702 (2014)

    Article  Google Scholar 

  45. A.M. Ferrie, H. Sun, Y. Fang, Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor. Sci. Rep. 1, 33 (2011)

    Article  Google Scholar 

  46. F. Verrier, S. An, A.M. Ferrie, H. Sun, M. Kyoung, Y. Fang, S.J. Benkovic, GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat. Chem. Biol. 7, 909–915 (2011)

    Article  Google Scholar 

  47. A.M. Ferrie, C. Wang, H. Deng, Y. Fang, Label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β2-adrerengic receptor. Integr. Biol. 5, 1253–1261 (2013)

    Article  Google Scholar 

  48. N. Orgovana, B. Kovacs, E. Farkas, B. Szabó, N. Zaytseva, Y. Fang, R. Horvath, Bulk and surface sensitivity of a resonant waveguide grating imager. Appl. Phys. Lett. 104, 083506 (2014)

    Article  Google Scholar 

  49. A.M. Ferrie, O.D. Deichmann, Q. Wu, Y. Fang, High resolution resonant waveguide grating imager for cell cluster analysis under physiological condition. Appl. Phys. Lett. 100, 223701 (2012)

    Article  Google Scholar 

  50. Y. Fang, Label-free whole cell phenotypic diagnostics for cancer, in Biosensors for Healthcare: Hot Topics, Future Medicine (2013), pp. 54–67

    Google Scholar 

  51. N. Zaytseva, W. Miller, V. Goral, J. Hepburn, Y. Fang, Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl. Phys. Lett. 96, 163703 (2011)

    Article  Google Scholar 

  52. D.J. Bornhop, J.C. Latham, A. Kussrow, D.A. Markov, R.D. Jones, H.S. Sørensen, Free-solution, label-free molecular interactions studied by backscattering interferometry. Science 317, 1732–1736 (2007)

    Article  Google Scholar 

  53. D.Z. Chen, W.R. Belben, J.B. Gallup, C. Mazzali, P. Dainese, T. Rhyne, Requirements for Bend Insensitive Fibers for Verizon’s FiOS and FTTH Applications. Paper NTuC2, OFC/ NFOEC2008, San Diego, California, 2008

    Google Scholar 

  54. M.-J. Li, P. Tandon, D.C. Bookbinder, S.R. Bickham, M.A. McDermott, R.B. Desorcie, D.A. Nolan, J.J. Johnson, K.A. Lewis, J.J. Englebert, Ultra-low Bending Loss Single-Mode Fiber for FTTH. J. Lightwave Technol. 27(3), 376–382 (2009)

    Article  Google Scholar 

  55. M. Heiblum, J.H. Harris, Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. QE-11, 75–83 (1975)

    Google Scholar 

  56. M.J. Li, X. Chen, D.A. Nolan, G.E. Berkey, J. Wang, W.A. Wood, L.A. Zenteno, High bandwidth single polarization fiber with elliptical central air hole. J. Lightwave Technol. 23, 3454–3460 (2005)

    Article  Google Scholar 

  57. P. Tandon, M.J. Li, D. Bookbinder, S. Logunov, E. Fewkes, Nano-engineered optical fibers and application. J. Nanophotonics 2(5–6), 383–392 (2013)

    Google Scholar 

  58. D.C. Bookbinder, M-J. Li, P. Tandon, Low bend loss optical fiber. United States Patent No. 8,385,701

    Google Scholar 

  59. M.-J. Li, P. Tandon, D.C. Bookbinder, S.R. Bickham, M.A. McDermott, R.B. Desorcie, D.A. Nolan, J.J Johnson, K.A. Lewis, J.J. Englebert, Ultra-low bending loss single-mode fiber for FTTH. OFC/ NFOEC2008, Paper PDP10, San Diego, California, 24 Feb 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Pambianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pambianchi, M.S. et al. (2016). Corning Incorporated: Designing a New Future with Glass and Optics. In: Madsen, L., Svedberg, E. (eds) Materials Research for Manufacturing. Springer Series in Materials Science, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-23419-9_1

Download citation

Publish with us

Policies and ethics