Variants and Additional Results

  • Alain HarauxEmail author
  • Mohamed Ali Jendoubi
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


In the applications to semilinear PDE of parabolic or hyperbolic type, some conditions, necessary for the results of the previous chapter to be applicable, can in fact be relaxed. This has been the object of several research papers which we recall in this last chapter. Several other questions (rate of convergence, asymptotically autonomous case, infinite dimensional non convergence results) are also discussed with reference to the specialized literature.


  1. 1.
    S.-Z. Huang, Gradient inequalities. With applications to asymptotic behavior and stability of gradient-like systems. Mathematical surveys and monographs, vol. 126. American Mathematical Society, Providence, RI, 2006. viii+184 ppGoogle Scholar
  2. 2.
    R. Chill, On the Łojasiewicz-Simon gradient inequality. J. Funct. Anal. 201, 572–601 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Haraux, M.A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot. Anal. 26(1), 21–36 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    M.A. Jendoubi, A simple unified approach to some convergence theorems of L. Simon. J. Funct. Anal. 153, 187–202 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. (2) 118(3), 525–571 (1983)Google Scholar
  6. 6.
    O. Kavian, Introduction la théorie des points critiques et applications aux problèmes elliptiques. Mathématiques & Applications (Berlin), vol. 13. (Springer, Paris, 1993)Google Scholar
  7. 7.
    S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Chergui, Convergence of global and bounded solutions of the wave equation with nonlinear dissipation and analytic nonlinearity. J. Evol. Equ. 9, 405–418 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    F. Aloui, I. Ben Hassen, A. Haraux, Compactness of trajectories to some nonlinear second order evolution equations and applications. J. Math. Pures Appl. (9) 100, 295–326 (2013)Google Scholar
  10. 10.
    A. Haraux, M.A. Jendoubi, O. Kavian, Rate of decay to equilibrium in some semilinear parabolic equations. Dedicated to Philippe Bnilan. J. Evol. Equ. 3(3), 463–484 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    I. Ben Hassen, A. Haraux, Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy. J. Funct. Anal. 260, 2933–2963 (2011)Google Scholar
  12. 12.
    A. Haraux, Slow and fast decay of solutions to some second order evolution equations. J. Anal. Math. 95, 297–321 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Haraux, Sharp decay estimates of the solutions to a class of nonlinear second order ODE’s. Anal. Appl. (Singap.) 9(1), 49–69 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    I. Ben Arbi, Rate of decay to 0 of the solutions to a nonlinear parabolic equation. Port. Math. 69(1), 2339 (2012)Google Scholar
  15. 15.
    I. Ben Arbi, A. Haraux, A sufficient condition for slow decay of a solution to a semilinear parabolic equation. Anal. Appl. (Singap.) 10(4), 363371 (2012)Google Scholar
  16. 16.
    M. Ghisi, M. Gobbino, A. Haraux, Optimal decay estimates for the general solution to a class of semi-linear dissipative hyperbolic equations, JEMS, in pressGoogle Scholar
  17. 17.
    M. Ghisi, M. Gobbino, A. Haraux, A description of all possible decay rates for solutions of some semilinear parabolic equations, JMPA, in pressGoogle Scholar
  18. 18.
    M. Ghisi, M. Gobbino, A. Haraux, Finding the exact decay rate of all solutions to some second order evolution equations with dissipation, to appearGoogle Scholar
  19. 19.
    S.-Z. Huang, P. Takač, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal., Ser. A, Theory. Methods 46, 675–698 (2001)zbMATHGoogle Scholar
  20. 20.
    R. Chill, M.A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations. Nonlinear Anal. 53(7–8), 1017–1039 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    R. Chill, M.A. Jendoubi, Convergence to steady states of solutions of non-autonomous heat equations in \(\mathbb{R}^N\). J. Dynam. Diff. Equat. 19(3), 777–788 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    I. Ben Hassen, Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations. Asymptot. Anal. 69, 31–44 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    I. Ben Hassen, L. Chergui, Convergence of global and bounded solutions of some nonautonomous second order evolution equations with nonlinear dissipation. J. Dynam. Diff. Equat. 23, 315–332 (2011)Google Scholar
  24. 24.
    P. Poláčik, K.P. Rybakowski, Nonconvergent bounded trajectories in semilinear heat equations. J. Diff. Equat. 124, 472–494 (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    P. Poláčik, F. Simondon, Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains. J. Diff. Equat. 186, 586–610 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    M.A. Jendoubi, P. Poláčik, Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping. Proc. Roy. Soc. Edinburgh Sect. A 133(5), 1137–1153 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsSorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7598ParisFrance
  2. 2.Institut Préparatoire aux Etudes Scientifiques et TechniquesUniversité de CarthageLa MarsaTunisia
  3. 3.Faculté des sciences de Tunis, Laboratoire EDP-LR03ES04Université de Tunis El ManarTunisTunisia

Personalised recommendations