Skip to main content

Approximate Bayesian Computation for Stochastic Single-Cell Time-Lapse Data Using Multivariate Test Statistics

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9308))

Included in the following conference series:

Abstract

Stochastic dynamics of individual cells are mostly modeled with continuous time Markov chains (CTMCs). The parameters of CTMCs can be inferred using likelihood-based and likelihood-free methods. In this paper, we introduce a likelihood-free approximate Bayesian computation (ABC) approach for single-cell time-lapse data. This method uses multivariate statistics on the distribution of single-cell trajectories. We evaluated our method for samples of a bivariate normal distribution as well as for artificial equilibrium and non-equilibrium single-cell time-series of a one-stage model of gene expression. In addition, we assessed our method for parameter variability and for the case of tree-structured time-series data. A comparison with an existing method using univariate statistics revealed an improved parameter identifiability using multivariate test statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://pub.ist.ac.at/~vnk/software.html.

References

  1. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for Markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Beaumont, M.A., Cornuet, J.M., Marin, J.M., Robert, C.P.: Adaptive Approximate Bayesian Computation. Biometrika 96(4), 983–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035 (2002)

    Google Scholar 

  4. Dargatz, C.: Bayesian inference for diffusion processes with application in life sciences. Ph.D. thesis, LMU Munich (2010)

    Google Scholar 

  5. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)

    Article  Google Scholar 

  6. Etzrodt, M., Endele, M., Schroeder, T.: Quantitative single-cell approaches to stem cell research. Cell Stem Cell 15(5), 546–558 (2014)

    Article  Google Scholar 

  7. Filippi, S., Barnes, C.P., Cornebise, J., Stumpf, M.P.: On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo. Stat. Appl. Genet. Mol. 12(1), 87–107 (2013)

    MathSciNet  Google Scholar 

  8. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Ann. Rev. Phy. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  9. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: efficient adaptive MCMC. Stat. Comput. 16(4), 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.J.: Method of conditional moments (MCM) for the Chemical Master Equation: a unified framework for the method of moments and hybrid stochastic-deterministic models. J. Math. Biol. 69(3), 687–735 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1(1), 43–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)

    Article  Google Scholar 

  14. Marin, J.M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)

    Article  Google Scholar 

  16. Nunes, M.A., Balding, D.J.: On optimal selection of summary statistics for approximate Bayesian computation. Stat. Appl. Genet. Mol. 9(1), Article 34 (2010)

    Google Scholar 

  17. Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A., Feldman, M.W.: Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16(12), 1791–1798 (1999)

    Article  Google Scholar 

  18. Ratmann, O., Camacho, A., Meijer, A., Donker, G.: Statistical modelling of summary values leads to accurate approximate Bayesian computations. arXiv preprint arXiv:1305.4283 (2013)

  19. Rosenbaum, P.R.: An exact distribution-free test comparing two multivariate distributions based on adjacency. J. R. Stat. Soc. Series B Stat. Methodol. 67(4), 515–530 (2005)

    Article  MATH  Google Scholar 

  20. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. 105(45), 17256–17261 (2008)

    Article  Google Scholar 

  21. Silk, D., Filippi, S., Stumpf, M.P.: Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems. Stat. Appl. Genet. Mol. 12(5), 603–618 (2013)

    MathSciNet  Google Scholar 

  22. Song, L.: Learning via Hilbert space embedding of distributions. Ph.D. thesis, University of Sydney (2008)

    Google Scholar 

  23. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6(31), 187–202 (2009)

    Article  Google Scholar 

  24. Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10(2), 122–133 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Postdoctoral Fellowship Program (PFP) of the Helmholtz Zentrum München. Furthermore, the authors thank Dennis Rickert, who provided the C-code implementation of the SSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hasenauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Loos, C., Marr, C., Theis, F.J., Hasenauer, J. (2015). Approximate Bayesian Computation for Stochastic Single-Cell Time-Lapse Data Using Multivariate Test Statistics. In: Roux, O., Bourdon, J. (eds) Computational Methods in Systems Biology. CMSB 2015. Lecture Notes in Computer Science(), vol 9308. Springer, Cham. https://doi.org/10.1007/978-3-319-23401-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23401-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23400-7

  • Online ISBN: 978-3-319-23401-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics