Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 63))

  • 8191 Accesses

Abstract

Probability theory, grounded in Kolmogorov’s axioms and the general foundations of measure theory, is an essential tool in the quantitative mathematical treatment of uncertainty. Of course, probability is not the only framework for the discussion of uncertainty: there is also the paradigm of interval analysis, and intermediate paradigms such as Dempster–Shafer theory, as discussed in Section 2.8 and Chapter 5.

To be conscious that you are ignorant is a great step to knowledge.

Sybil

Benjamin Disraeli

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is an entertaining exercise to see what pathological properties can hold for a probability measures on a \(\sigma\)-algebra other than the power set of a finite set \(\mathcal{X}\).

  2. 2.

    Here we are again abusing notation to conflate \(C_{ij}: \mathcal{H}_{i} \oplus \mathcal{H}_{j} \rightarrow \mathbb{K}\) defined in (2.6) with \(C_{ij}: \mathcal{H}_{j} \rightarrow \mathcal{H}_{i}\) given by \(\langle C_{ij}(k_{j}),k_{i}\rangle _{\mathcal{H}_{i}} = C_{ij}(k_{i},k_{j})\).

References

  • L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.

    Google Scholar 

  • M. Atiyah. Collected Works. Vol. 6. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 2004.

    Google Scholar 

  • P. Billingsley. Probability and Measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, third edition, 1995.

    Google Scholar 

  • S. Bochner. Integration von Funktionen, deren Werte die Elemente eines Vectorraumes sind. Fund. Math., 20:262–276, 1933.

    Google Scholar 

  • V. I. Bogachev. Gaussian Measures, volume 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998. doi: 10.1090/surv/062.

    Google Scholar 

  • G. Boole. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberley, London, 1854.

    Book  Google Scholar 

  • N. Bourbaki. Integration. I. Chapters 1 6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2004. Translated from the 1959, 1965 and 1967 French originals by Sterling K. Berberian.

    Google Scholar 

  • M. Capiński and E. Kopp. Measure, Integral and Probability. Springer Undergraduate Mathematics Series. Springer-Verlag London Ltd., London, second edition, 2004. doi: 10.1007/978-1-4471-0645-6.

    Google Scholar 

  • R. T. Cox. Probability, frequency and reasonable expectation. Amer. J. Phys., 14:1–13, 1946.

    Article  MathSciNet  MATH  Google Scholar 

  • R. T. Cox. The Algebra of Probable Inference. The Johns Hopkins Press, Baltimore, Md, 1961.

    MATH  Google Scholar 

  • G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992. doi: 10.1017/ CBO9780511666223.

    Google Scholar 

  • C. Dellacherie and P.-A. Meyer. Probabilities and Potential, volume 29 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam-New York; North-Holland Publishing Co., Amsterdam-New York, 1978.

    Google Scholar 

  • A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist., 38:325–339, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Diestel and J. J. Uhl, Jr. Vector Measures. Number 15 in Mathematical Surveys. American Mathematical Society, Providence, R.I., 1977.

    Google Scholar 

  • J. Feldman. Equivalence and perpendicularity of Gaussian processes. Pacific J. Math., 8:699–708, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  • X. Fernique. Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Sér. A-B, 270:A1698–A1699, 1970.

    MathSciNet  Google Scholar 

  • R. A. Gordon. The Integrals of Lebesgue, Denjoy, Perron, and Henstock, volume 4 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1994.

    Google Scholar 

  • J. Hájek. On a property of normal distribution of any stochastic process. Czechoslovak Math. J., 8 (83):610–618, 1958.

    MathSciNet  Google Scholar 

  • J. Y. Halpern. A counterexample to theorems of Cox and Fine. J. Artificial Intelligence Res., 10:67–85 (electronic), 1999a.

    Google Scholar 

  • J. Y. Halpern. Cox’s theorem revisited. Technical addendum to Halpern (1999a). J. Artificial Intelligence Res., 11:429–435 (electronic), 1999b.

    Google Scholar 

  • V. M. Kadets. Non-differentiable indefinite Pettis integrals. Quaestiones Math., 17(2):137–139, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Keynes. A Treatise on Probability. Macmillan and Co., London, 1921.

    MATH  Google Scholar 

  • V. P. Kuznetsov. Intervalnye statisticheskie modeli. “Radio i Svyaz′”, Moscow, 1991.

    Google Scholar 

  • J. Mikusiński. The Bochner Integral. Birkhäuser Verlag, Basel, 1978. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 55.

    Google Scholar 

  • C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2006.

    MATH  Google Scholar 

  • J. P. Romano and A. F. Siegel. Counterexamples in Probability and Statistics. The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986.

    MATH  Google Scholar 

  • R. A. Ryan. Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, 2002.

    Book  MATH  Google Scholar 

  • V. Sazonov. On characteristic functionals. Teor. Veroyatnost. i Primenen., 3:201–205, 1958.

    MathSciNet  MATH  Google Scholar 

  • G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, N.J., 1976.

    MATH  Google Scholar 

  • R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications, volume 12 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014.

    Google Scholar 

  • J. M. Stoyanov. Counterexamples in Probability. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester, 1987.

    Google Scholar 

  • M. Talagrand. Pettis integral and measure theory. Mem. Amer. Math. Soc., 51(307):ix+224, 1984. doi: 10.1090/memo/0307.

    Google Scholar 

  • N. N. Vakhania. The topological support of Gaussian measure in Banach space. Nagoya Math. J., 57:59–63, 1975.

    MathSciNet  MATH  Google Scholar 

  • P. Walley. Statistical Reasoning with Imprecise Probabilities, volume 42 of Monographs on Statistics and Applied Probability. Chapman and Hall Ltd., London, 1991.

    Google Scholar 

  • K. Weichselberger. The theory of interval-probability as a unifying concept for uncertainty. Internat. J. Approx. Reason., 24(2-3):149–170, 2000. doi: 10.1016/S0888-613X(00)00032-3.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Yamasaki. Measures on Infinite-Dimensional Spaces, volume 5 of Series in Pure Mathematics. World Scientific Publishing Co., Singapore, 1985. doi: 10.1142/0162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sullivan, T.J. (2015). Measure and Probability Theory. In: Introduction to Uncertainty Quantification. Texts in Applied Mathematics, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-23395-6_2

Download citation

Publish with us

Policies and ethics