Skip to main content

Non-Intrusive Methods

  • Chapter
  • 7938 Accesses

Part of the book series: Texts in Applied Mathematics ((TAM,volume 63))

Abstract

Chapter 12 considers a spectral approach to UQ, namely Galerkin expansion, that is mathematically very attractive in that it is a natural extension of the Galerkin methods that are commonly used for deterministic PDEs and (up to a constant) minimizes the stochastic residual, but has the severe disadvantage that the stochastic modes of the solution are coupled together by a large system such as (12.15).

[W]hen people thought the Earth was flat, they were wrong. When people thought the Earth was spherical, they were wrong. But if you think that thinking the Earth is spherical is just as wrong as thinking the Earth is flat, then your view is wronger than both of them put together.

The Relativity of Wrong

Isaac Asimov

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As usual, readers will lose little by assuming that \(\mathcal{U} = \mathbb{R}\) on a first reading. Later, \(\mathcal{U}\) should be thought of as a non-trivial space of time- and space-dependent fields, so that \(U(t,x;\theta ) =\sum _{k\in \mathbb{N}_{0}}(t,x)\varPsi _{k}(\theta )\).

  2. 2.

    Indeed, many standard numerical linear algebra packages will readily solve the system (13.4) without throwing any error whatsoever.

References

  • V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math., 12(4):273–288, 2000. doi: 10.1023/A:1018977404843.

    Article  MathSciNet  MATH  Google Scholar 

  • M. D. Buhmann. Radial Basis Functions: Theory and Implementations, volume 12 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2003. doi: 10.1017/ CBO9780511543241.

    Google Scholar 

  • S. Conti, J. P. Gosling, J. E. Oakley, and A. O’Hagan. Gaussian process emulation of dynamic computer codes. Biometrika, 96(3):663–676, 2009. doi: 10.1093/biomet/asp028.

    Article  MathSciNet  MATH  Google Scholar 

  • C. de Boor. A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences. Springer-Verlag, New York, revised edition, 2001.

    Google Scholar 

  • C. de Boor and A. Ron. On multivariate polynomial interpolation. Constr. Approx., 6(3):287–302, 1990. doi: 10.1007/BF01890412.

    Article  MathSciNet  MATH  Google Scholar 

  • D. G. Krige. A statistical approach to some mine valuations and allied problems at the Witwatersrand. Master’s thesis, University of the Witwatersrand, South Africa, 1951.

    Google Scholar 

  • O. P. Le Maître and O. M. Knio. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation. Springer, New York, 2010. doi: 10.1007/ 978-90-481-3520-2.

    Book  Google Scholar 

  • G. Matheron. Principles of geostatistics. Econ. Geo., 58(8):1246–1266, 1963. doi: 10.2113/gsecongeo.58.8.1246.

    Article  Google Scholar 

  • A. Narayan and D. Xiu. Stochastic collocation methods on unstructured grids in high dimensions via interpolation. SIAM J. Sci. Comput., 34(3): A1729–A1752, 2012. doi: 10.1137/110854059.

    Article  MathSciNet  MATH  Google Scholar 

  • F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2309–2345, 2008a. doi: 10.1137/ 060663660.

    Article  MathSciNet  MATH  Google Scholar 

  • F. Nobile, R. Tempone, and C. G. Webster. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2411–2442, 2008b. doi: 10.1137/070680540.

    Article  MathSciNet  MATH  Google Scholar 

  • C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2006.

    MATH  Google Scholar 

  • M. Schober, D. Duvenaud, and P. Hennig. Probabilistic ODE solvers with Runge–Kutta means. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 739–747. Curran Associates, Inc., 2014.

    Google Scholar 

  • P. L. Smith. Splines as a useful and convenient statistical tool. The American Statistician, 33(2):57–62, 1979. doi: 10.1080/00031305.1979.10482661.

    MATH  Google Scholar 

  • D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, NJ, 2010.

    Google Scholar 

  • L. Yan, L. Guo, and D. Xiu. Stochastic collocation algorithms using 1-minimization. Int. J. Uncertain. Quantif., 2(3):279–293, 2012. doi: 10.1615/Int.J. UncertaintyQuantification.2012003925.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sullivan, T.J. (2015). Non-Intrusive Methods. In: Introduction to Uncertainty Quantification. Texts in Applied Mathematics, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-23395-6_13

Download citation

Publish with us

Policies and ethics