Skip to main content

Somatosensory- and Motor-Evoked Potentials in Surgery of Eloquent Cortex Under General Anesthesia: Advantages and Limitations

  • Chapter
Functional Mapping of the Cerebral Cortex

Abstract

In this chapter we will discuss two neurophysiological tools: somatosensory-evoked potentials (scalp and cortically recorded) and motor-evoked potentials (transcranial stimulation, direct cortical stimulation, and direct subcortical white matter stimulation), which assist the neurological surgeon operating under general anesthesia upon a patient with a cerebral lesion in proximity to eloquent cortex. We define eloquent cortex as a region whose damage may likely result in a neurological deficit within the realm of motor (paralysis, weakness, coordination), or sensory discrimination (perceptual, visual, spatial orientation, agnosia, apraxia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larson SJ, Sances A. Evoked potentials in man: neurosurgical applications. Am J Surg. 1966;111(6):857–61.

    Article  CAS  PubMed  Google Scholar 

  2. Moller A. Monitoring of somatosensory evoked potentials, Intraoperative neurophysiological monitoring. 2nd ed. Totowa, NJ: Humana Press; 2006. p. 125–44.

    Google Scholar 

  3. Nuwer M. Somatosensory evoked potential monitoring with scalp and cervical recording. In: Galloway G, Nuwer M, Lopez J, Zamel KM, editors. Intraoperative neurophysiologic monitoring. New York: Cambridge University Press; 2010. p. 63–74.

    Google Scholar 

  4. Simon M. Neurophysiologic tests in the operating room. In: Simon M, editor. Intraoperative neurophysiology. New York: Domos Medical; 2010. p. 2–44.

    Google Scholar 

  5. Toleikis JR. Intraoperative monitoring using somatosensory evoked potentials: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19:241–58.

    Article  PubMed  Google Scholar 

  6. American Electroencephalographic Society. Guidelines for intraoperative monitoring of sensory evoked potentials. J Clin Neurophysiol. 1994;11:77–87.

    Article  Google Scholar 

  7. Neuromonitoring during surgery. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1993;87:263–76.

    Google Scholar 

  8. American Society of Electroneurodiagnostic Technicians (ASET). Position statement on Electroneurodiagnostic Technologists in the Operating Room. 1998.

    Google Scholar 

  9. International Organization of Societies for Electrophysiological Technology (OSET). Guidelines for performing EEG and evoked potential monitoring during surgery. Am J END Technol. 1999;39:257–77.

    Google Scholar 

  10. Simon MV. The effects of anesthetics on intraoperative neurophysiology studies. In: Simon M, editor. Intraoperative neurophysiology. New York: Demos Medical; 2010. p. 325–34.

    Google Scholar 

  11. Sloan TB. Intraoperative neurophysiology and anesthesia management. In: Deletis V, Shils J, editors. Neurophysiology in neurosurgery. San Diego, CA: Academic Press; 2002. p. 451–74. part VII.

    Chapter  Google Scholar 

  12. Zouridakis G, Papanicolaou AC. A concise guide to intraoperative monitoring. Boca Raton, FL: CRC Press; 2001.

    Google Scholar 

  13. Neuloh G, Schramm J. Evoked potential monitoring during surgery for intracranial aneurysms. In: Nuwer M, editor. Handbook of clinical neurophysiology, vol. 8. Amsterdam: Elsevier; 2008. p. 801–14.

    Google Scholar 

  14. Symon L. The relationship between CBF, evoked potentials and clinical features in cerebral ischaemia. Acta Neurol Scand Suppl. 1980;78:175–90.

    CAS  PubMed  Google Scholar 

  15. Szelényi A. Intraoperative neurophysiological monitoring under general anesthesia. In: Duffau H, editor. Brain mapping. New York: SpringerWien; 2011. p. 287–94.

    Chapter  Google Scholar 

  16. Wiedemayer H, Sandalcioglu IE, Regel J, Schaefer H, Stolke D. False negative findings in intraoperative SEP monitoring: analysis of 658 consecutive neurosurgical cases and review of published reports. J Neurol Neurosurg Psychiatry. 2004;75:280–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Allison T. Scalp and cervical recordings of initial somatosensory cortex activity to median nerve stimulation in man. Ann N Y Acad Sci. 1982;388:671–8.

    Article  CAS  PubMed  Google Scholar 

  18. Berger MS, Kincaid J, Ojemann GA, et al. Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery. 1989;25:786–92.

    Article  CAS  PubMed  Google Scholar 

  19. Cedzich C, Taniguchi M, Schafer S, et al. Somatosensory evoked potentials phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38:962–70.

    Article  CAS  PubMed  Google Scholar 

  20. Goldring S. A method for surgical management of focal epilepsy, especially as it relates to children. J Neurosurg. 1978;49:344–56.

    Article  CAS  PubMed  Google Scholar 

  21. Goldring S, Gregorie EM. Surgical management of epilepsy using epidural recordings to localize the seizure focus: Review of 100 cases. J Neurosurg. 1984;60:457–66.

    Google Scholar 

  22. Stone JL, Ghaly RF, Crowell RM, Hughes JR, Fino JJ. Simplified method of SEP recording from the cerebral cortical surface. Clin EEG. 1989;20:212–4.

    Article  CAS  Google Scholar 

  23. Wood CC, Spencer DD, Allison T, et al. Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg. 1988;68:99–111.

    Article  CAS  PubMed  Google Scholar 

  24. Woolsey CN, Erickson TC, Gilson WE. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg. 1979;51:476–506.

    Article  CAS  PubMed  Google Scholar 

  25. Kombos T. Somatosensory evoked potentials for intraoperative mapping of the sensorimotor cortex. In: Nuwer M, editor. Handbook of clinical neurophysiology, vol. 8. Amsterdam: Elsevier; 2008. p. 211–15.

    Google Scholar 

  26. Neuloh G, Schramm J. Intraoperative neurophysiological mapping and monitoring for supratentorial procedures. In: Deletis V, Shils J, editors. Neurophysiology in neurosurgery. San Diego: Academic Press; 2002. p. 339–90.

    Google Scholar 

  27. Simon MV, Shields DC, Eskandar EN. Functional cortical mapping. In: Simon M, editor. Intraoperative neurophysiology. New York: Demos Medical; 2010. p. 131–76.

    Google Scholar 

  28. Kumabe T, Nakasato N, Nagamatsu K, Tominaga T. Intraoperative localization of the lip sensory area by somatosensory evoked potentials. J Clin Neurosci. 2005;12:66–70.

    Article  CAS  PubMed  Google Scholar 

  29. Nuwer MR. Localization of motor cortex with median nerve somatosensory evoked potentials. In: Schramm J, Moller A, editors. Intraoperative neurophysiological monitoring. Heidelberg, Berlin: Springer; 1991. p. 63–71.

    Google Scholar 

  30. King RB, Schell GR. Cortical localization and monitoring during cerebral operations. J Neurosurg. 1987;67:210–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kombos TH, Suess O, Funk TH, Brock M. Intraoperative mapping of the motor cortex during surgery in and around the motor cortex. Acta Neurochi (Wien). 2000;142:263–8.

    Article  CAS  Google Scholar 

  32. Suess O, Ciklatekerlio O, Suess S, da Silva C, Brock M, Kombos TH. Klinische Studie zur Anwendung der hochfrequenten monopoloren Kortexstimulation (MKS) fur die Intraoperative Ortung und Uberwachung motorischer Hirnareale bei Eingriffe in der Nahe der Zentralregion. Klin Neurophysiol. 2003;34:127–37.

    Article  Google Scholar 

  33. Ghaly RF, Stone JL, Aldrete JA. Motor evoked potentials (MEP) following transcranial magnetic stimulation in monkey anesthetized with Nitrous Oxide, Ketamine and Thiamylal Sodium (Abstract). Anesthesiology. 1988;69:A606.

    Article  Google Scholar 

  34. Ghaly RF, Stone JL, Levy WJ, et al. The effect of neuroleptanalgesia (droperiodol-fentanyl) on motor evoked potentials evoked by transcranial magnetic stimulation in the monkey. J Neurosurg Anesthesiol. 1991;3(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  35. Ghaly RF, Stone JL, Levy WJ, Kartha R, Miles ML, Jaster HJ. The effects of etomidate or midazolam hypnotic dose on motor evoked potentials in the monkey. J Neurosurg Anesthesiol. 1990;2:244.

    Article  Google Scholar 

  36. Ghaly RF, Stone JL, Levy WJ. Protocol for intraoperative SSEP-Myogenic MEP recordings. Neurosurgery. 1991;29:480–2.

    Google Scholar 

  37. Ghaly RF, Stone JL, Levy WJ. Intraoperative motor evoked potential monitoring. In: Levy WJ, editor. Magnetic motor stimulation: basic principals and clinical experience. Amsterdam: Elsevier; 1991.

    Google Scholar 

  38. Ghaly RF, Stone JL, Lee JJ, Ham JH, Levy WJ. Monitoring spinal cord motor and somatosensory evoked potentials in anesthetized primates. Neurol Res. 1999;21:359–67.

    CAS  PubMed  Google Scholar 

  39. Ghaly RF, Stone JL, Aldrete JA, Wj L. Effects of incremental ketamine hydrochloride doses on motor evoked potentials (MEPs) following transcranial magnetic stimulation: a primate study. J Neurosurg Anesth. 1990;2:79.

    Article  CAS  Google Scholar 

  40. Stone JL, Ghaly RF, et al. The effect of enflurane on magnetic motor and somatosensory evoked potentials in the primate. Electroenceph Clin Neurophysiol. 1992;84:180–7.

    Article  CAS  PubMed  Google Scholar 

  41. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol. 1996;100:375–83.

    Article  CAS  PubMed  Google Scholar 

  42. Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996;39:335–43.

    Article  CAS  PubMed  Google Scholar 

  43. Rodi Z, Deletis V, Morota N, Vodusek DB. Motor evoked potentials during brain surgery. Pflugers Arch. 1996;431(6 Suppl 2):R291–2.

    Article  CAS  PubMed  Google Scholar 

  44. MacDonald DB. Safety of intraoperative transcranial electric stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19:416–29.

    Article  PubMed  Google Scholar 

  45. MacDonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring – a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124:2291–316.

    Article  CAS  PubMed  Google Scholar 

  46. Amassian VE. Animal and human motor system neurophysiology related to intraoperative monitoring. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery. San Diego: Academic; 2002. p. 3–23.

    Chapter  Google Scholar 

  47. Deletis V. Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery. San Diego: Academic; 2002. p. 25–51.

    Chapter  Google Scholar 

  48. MacDonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20:347–77.

    Article  PubMed  Google Scholar 

  49. Szelényi A, Kothbauer KF, Deletis V. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: stimulation parameters and electrode montages. Clin Neurophysiol. 2007;118:1586–95.

    Article  PubMed  Google Scholar 

  50. Mendiratta A, Emerson RG. Transcranial electrical MEP with muscle recording. In: Nuwer M, editor. Handbook of clinical neurophysiology, vol. 8. Amsterdam: Elsevier; 2008. p. 218–34.

    Google Scholar 

  51. Agnew WF, McCreery DB. Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery. 1987;20:143–7.

    Article  CAS  PubMed  Google Scholar 

  52. Katayama Y, Tsubokawa T, Maejima S, Hirayama T, Yamamoto T. Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anesthesia. J Neurol Neurosurg Psychiatry. 1998;51:50–9.

    Article  Google Scholar 

  53. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol. 1994;481:243–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. MacDonald DB, Deletis V. Safety issues during surgical monitoring. In: Nuwer MR, editor. Intraoperative monitoring of neural function, Handbook of clinical neurophysiology, vol. 8. Amsterdam: Elsevier; 2008. p. 882–98.

    Google Scholar 

  55. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg. 1998;88:457–70.

    Article  CAS  PubMed  Google Scholar 

  56. Chen Z. The effects of isoflurane and propofol on intraoperative neurophysiological monitoring during spinal surgery. J Clin Monit Comput. 2004;18:303–8.

    Article  PubMed  Google Scholar 

  57. Langeloo DD, Journée HL, de Kleuver M, Grotenhuis JA. Criteria for transcranial electrical motor evoked potential monitoring during spinal deformity surgery. A review and discussion of the literature. Neurophysiol Clin. 2007;37:431–9.

    Article  PubMed  Google Scholar 

  58. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58:1129–43.

    Article  PubMed  Google Scholar 

  59. Sutter M, Deletis V, Dvorak J, Eggspuehler A, Grob D, Macdonald D, et al. Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16:S232–7.

    Article  PubMed  Google Scholar 

  60. Szelényi A, Kothbauer K, de Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(4 Suppl):331–8.

    PubMed  Google Scholar 

  61. Sloan T. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46.

    Article  PubMed  Google Scholar 

  62. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol. 2005;17:13–9.

    PubMed  Google Scholar 

  63. MacDonald DB, Al Zayed Z, Al Saddigi A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries. Eur Spine J. 2007;16:S171–87.

    Article  PubMed  Google Scholar 

  64. MacDonald DB, Janusz M. An approach to intraoperative neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol. 2002;19:43–54.

    Article  PubMed  Google Scholar 

  65. Calancie B, Molano MR. Alarm criteria for motor-evoked potentials: what’s wrong with the “presence-or-absence” approach? Spine (Phila Pa 1976). 2008;33:406–14.

    Article  Google Scholar 

  66. Neuloh G, Pechstein U, Schramm J. Motor tract monitoring during insular glioma surgery. J Neurosurg. 2007;106:582–92.

    Article  PubMed  Google Scholar 

  67. Szelényi A, Hattingen E, Weidauer S, Seifert V, Ziemann U. Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery. 2010;67:302–13.

    Article  PubMed  Google Scholar 

  68. Calancie B, Harris W, Brindle GF, Green BA, Landy HJ. Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg. 2001;95(2 Suppl):161–8.

    CAS  PubMed  Google Scholar 

  69. Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring in supratentorial surgery. Neurosurgery. 2004;54:1061–72.

    Article  PubMed  Google Scholar 

  70. Sala F, Lanteri P. Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci. 2003;47:79–88.

    CAS  PubMed  Google Scholar 

  71. Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J. Functional results after resective procedures involving the supplementary motor area. J Neurosurg. 1996;85:542–9.

    Article  CAS  PubMed  Google Scholar 

  72. Berger MS. Functional mapping-guided resection of low-grade gliomas. Clin Neurosurg. 1995;42:437–52.

    CAS  PubMed  Google Scholar 

  73. Berger MS, Rostomily RC. Low grade gliomas: functional mapping, resection strategies, extent of resection, and outcome. J Neurooncol. 1997;34:85–101.

    Article  CAS  PubMed  Google Scholar 

  74. Berger MS. Minimalism through intraoperative functional mapping. Clin Neurosurg. 1996;43:324–37.

    CAS  PubMed  Google Scholar 

  75. Ebel H, Ebel M, Schillinger G, et al. Surgery of intrinsic cerebral neoplasms in eloquent areas under local anesthesia. Minim Invasive Neurosurg. 2000;43:192–6.

    Article  CAS  PubMed  Google Scholar 

  76. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.

    Article  Google Scholar 

  77. Yingling CD, Ojemann S, Dodson B, et al. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg. 1999;91:922–7.

    Article  CAS  PubMed  Google Scholar 

  78. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32:219–26.

    Article  CAS  PubMed  Google Scholar 

  79. Szelenyi A, Joksimovic B, Seifert V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol. 2007;24:39–43.

    Article  PubMed  Google Scholar 

  80. Kombos T, Suess O, Kern BC, Funk T, Hoell T, Kopetsch O, Brock M. Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta Neurochir (Wien). 1999;41:1295–301.

    Article  Google Scholar 

  81. Deletis V, Camargo AB. Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery. 2001;49:1488–9.

    Article  CAS  PubMed  Google Scholar 

  82. Kombos T, Kopetsch O, Suess O, Brock M. Does preoperative paresis influence intraoperative monitoring of the motor cortex? J Clin Neurophys. 2003;20:129–34.

    Article  Google Scholar 

  83. Kombos T, Suess O, Ciklatekerlio O, Brock M. Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg. 2001;95:608–14.

    Article  CAS  PubMed  Google Scholar 

  84. Seidel K, Beck J, Steiglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumor: clinical article. J Neurosurg. 2013;118:287. (or 284)–296.

    Article  PubMed  Google Scholar 

  85. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. Low threshold monopolar motor mapping for resection of primary motor cortex tumors. Neurosurgery. 2012;71(1 Suppl Operative):104–15.

    PubMed  Google Scholar 

  86. Landazuri P, Eccher M. Simultaneous direct cortical motor evoked potential monitoring and subcortical mapping for motor pathway preservation during brain tumor surgery: is it useful? J Clin Neurophysiol. 2013;30(6):623–5.

    Article  PubMed  Google Scholar 

  87. Duffau H. Brain Mapping. From neural basis of cognition to surgical applications. Duffau H ed. New York: Springer-Wien, 2011.

    Google Scholar 

  88. Kamada K, Todo T, Ota T, et al. The motor-evoked potential threshold evaluated by tractography and electrical stimulation. J Neurosurg. 2009;11:785–95.

    Article  Google Scholar 

  89. Nossek E, Korn A, Shahar T, et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. J Neurosurg. 2011;114:738–46.

    Article  PubMed  Google Scholar 

  90. Prabhu SS, Gasco J, Tummala S, et al. Intraoperative magnetic resonance imaging guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. J Neurosurg. 2011;114:719–26.

    Article  PubMed  Google Scholar 

  91. Girvin JL. Complications of epilepsy surgery. In: Luders H, editor. Epilepsy surgery. New York: Raven Press; 1991. p. 653–60.

    Google Scholar 

  92. Sloan TB. Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol. 1998;15(3):217–26.

    Article  CAS  PubMed  Google Scholar 

  93. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64(5):590–3.

    Article  CAS  PubMed  Google Scholar 

  94. Pathak KS, Brown RH, Cascorbi HF, et al. Effects of fentanyl and morphine on intraoperative somatosensory cortical-evoked potentials. Anesth Analg. 1984;63(9):833–7.

    Article  CAS  PubMed  Google Scholar 

  95. Kochs E, Treede RD, Schulte AM, Esche J. Increase of somatosensorially evoked potentials during induction of anesthesia with etomidate. Anaesthesist. 1986;35:359–64.

    CAS  PubMed  Google Scholar 

  96. McPhearson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65(6):584–9.

    Article  Google Scholar 

  97. Sloan TB, Ronai AK, Toleikis JR, Koht A. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67(6):582–5.

    Article  CAS  PubMed  Google Scholar 

  98. Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology. 1990;72(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  99. Tobias JD, Goble TJ, Bates G, et al. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.

    Article  PubMed  Google Scholar 

  100. Glassman SD, Shields CB, Linden RD, et al. Anesthetic effects on motor evoked potentials in dogs. Spine. 1993;18(8):1083–9.

    Article  CAS  PubMed  Google Scholar 

  101. Kalkman CJ, Drummond JC, Ribberink AA, et al. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial or magnetic stimulation in humans. Anesthesiology. 1992;76(4):502–9.

    Article  CAS  PubMed  Google Scholar 

  102. Rehberg B, Grünewald M, Baars J, Fuegener K, Urban BW, Kox WJ. Monitoring of immobility to noxious stimulation during sevoflurane anesthesia using the spinal H-reflex. Anesthesiology. 2004;100:44–50.

    Article  CAS  PubMed  Google Scholar 

  103. Zentner J, Albrecht T, Heuser D. Influence of halothane, enflurane, and isoflurane on motor evoked potentials. Neurosurgery. 1992;31:298–305.

    Article  CAS  PubMed  Google Scholar 

  104. Zhou HH, Jin TT, Qin B, Turndorf H. Suppression of spinal cord motoneuron excitability correlates with surgical immobility during isoflurane anesthesia. Anesthesiology. 1998;88:955–61.

    Article  CAS  PubMed  Google Scholar 

  105. Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology. 2000;93:32–8.

    Article  CAS  PubMed  Google Scholar 

  106. Lumenta CB. Effect of etomidate on motor evoked potentials in monkeys. Neurosurgery. 1991;29(3):480–2.

    Article  CAS  PubMed  Google Scholar 

  107. Sloan T, Levin D. Etomidate amplifies and depresses transcranial motor evoked potentials in the monkey. J Neurosurg Anesth. 1993;5:299.

    Google Scholar 

  108. Kothbauer K, Schmid UD, Liechti S, Rosler KM. The effect of ketamine anesthesia induction on muscle responses to transcranial magnetic cortex stimulation studied in man. Neurosci Lett. 1993;154:105–8.

    Article  CAS  PubMed  Google Scholar 

  109. Mahmoud M, Sadhasivam S, Sestokas AK, et al. Loss of transcranial electric motor evoked potentials during pediatric spine surgery with dexmedetomidine. Anesthesiology. 2007;106(2):393–6.

    Article  PubMed  Google Scholar 

  110. Duffau H. Intraoperative cortico-subcortical stimulations in low-grade gliomas. Expert Rev Neurother. 2005;5:473–85.

    Article  PubMed  Google Scholar 

  111. Ghaly RF, Stone JL, Levy WJ. Anesthetic protocol for intraoperative somatosensory (SEP) and motor evoked potential (MEP) recordings. J Neurosurg Anesthesiol. 1992;4:68–9.

    Article  CAS  PubMed  Google Scholar 

  112. Journee HL. Motor EP physiology, risks and specific anesthetic effects. In: Nuwer M, editor. Handbook of clinical neurophysiology, vol. 8. Amsterdam: Elsevier; 2008. p. 218–34.

    Google Scholar 

  113. Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note. J Neurosurg. 1998;88:349–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley N. Selner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Selner, A.N., Stone, J.L. (2016). Somatosensory- and Motor-Evoked Potentials in Surgery of Eloquent Cortex Under General Anesthesia: Advantages and Limitations. In: Byrne, R. (eds) Functional Mapping of the Cerebral Cortex. Springer, Cham. https://doi.org/10.1007/978-3-319-23383-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23383-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23382-6

  • Online ISBN: 978-3-319-23383-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics