Skip to main content

Abstract

While neurosurgeons have paid a great deal of attention to the anatomy of the cortex, less attention has been paid to the anatomy of the cerebral white matter. Where the cortical gray matter is conveniently divided into discrete segments by fairly regular sulci, the white matter appears to be amorphous. The named white matter tracts seem to define predominant directions of axon flow. Most of these tracts contain multiple subcomponents as demonstrated by a recent report on Meyer’s loop [1]. The anatomy of several “eloquent” tracts has been elucidated through clinical pathologic correlation, anatomic dissections, imaging studies, and intraoperative electrical stimulation. As with the cerebral cortex where certain input and output areas have been found to be essential and designated eloquent, certain white matter pathways have also been found to be essential for basic neurological functions [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goga C, Ture U. The anatomy of Meyer’s loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection. J Neurosurg. 2015;122(6):1253–62.

    Article  PubMed  Google Scholar 

  2. Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56(3):992–1000.

    Article  PubMed  Google Scholar 

  3. Duffau H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci Res. 2009;65(2):131–5.

    Article  PubMed  Google Scholar 

  4. Garrison FH. History of neurology. Revised and enlarged with a bibliography of classical, original, and standard works in neurology. In: McHenry Jr LC, editor. History of neurology. IIIth ed. Springfield: Thomas; 1969.

    Google Scholar 

  5. Wernicke C. Der aphasische Symptomencomplex, eine psychologische Studie auf anatomischer Basis. Berslau: M. Cohn und Weigert; 1874.

    Google Scholar 

  6. Dejerine J. Anatomie des centres nerveux. Ann Neurol. 1895;1(57):8–16.

    Google Scholar 

  7. Reil JC. Die vo¨rdere commissur im groben gehirn. Archiv für die Physiologie, 1812;11:89–100. Cited in Marco Catania, Marsel Mesulamb. The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state cortex 44(2008)953–961.

    Google Scholar 

  8. Reil JC. Die vo¨rdere commissur im groben gehirn. Archiv fu¨ r die Physiologie. 1812;11:89–100. Cited in: Marco Catania, Marsel Mesulamb. The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state cortex. 44(2008)953–961.

    Google Scholar 

  9. Geschwind N, Kaplan E. A human cerebral deconnection syndrome. A preliminary report. Neurology. 1962;12:675–85.

    Article  CAS  PubMed  Google Scholar 

  10. Geschwind N. Disconnexion syndromes in animals and man. II. Brain. 1965;88(3):585–644.

    Article  CAS  PubMed  Google Scholar 

  11. Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965;88(2):237–94.

    Article  CAS  PubMed  Google Scholar 

  12. Burdach K. Vom baue und leben des gehirns und ruckenmarks. Leipzig: Dyk.: Cortex; pp. 1819–26.

    Google Scholar 

  13. Catania M, Mesulamb M. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex. 2008;44:953–61.

    Article  Google Scholar 

  14. Talamonti G, D’Aliberti G, Debernardi A, Innocenti G. Vittorio Marchi, MD (1851-1908): an unsung pioneer of neuroscience. Neurosurgery. 2013;73(5):887–93. discussion 893.

    Article  PubMed  Google Scholar 

  15. Glees P. Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropathol Exp Neurol. 1946;5:54–9.

    Article  CAS  PubMed  Google Scholar 

  16. Nauta WJ, Gygax PA. Silver impregnation of degenerating axon terminals in the central nervous system: (1) Technic. (2) Chemical notes. Stain Technol. 1951;26(1):5–11.

    CAS  PubMed  Google Scholar 

  17. Petrides M, Pandya DN. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol. 1984;228(1):105–16.

    Article  CAS  PubMed  Google Scholar 

  18. Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 1972;37(1):21–51.

    Article  CAS  PubMed  Google Scholar 

  19. Schmahmann JD, Pandya DN, Wang R, et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain. 2007;130(Pt 3):630–53.

    Article  PubMed  Google Scholar 

  20. Petrides M, Pandya DN. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol. 1988;273(1):52–66.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Fernandez-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC. Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex. 2013;23(10):2347–56.

    Article  PubMed  Google Scholar 

  22. Klingler J. Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr. 1935;36:247–56.

    Google Scholar 

  23. Ludwig E, Klingler J. Atlas cerebri humani. Switzerland: Basel; 1956.

    Google Scholar 

  24. Ture U, Yasargil MG, Friedman AH, Al-Mefty O. Fiber dissection technique: lateral aspect of the brain. Neurosurgery. 2000;47(2):417–26. discussion 426–7.

    Article  CAS  PubMed  Google Scholar 

  25. Maldonado IL, de Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H. Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat. 2013;223(1):38–45.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Martino J, De Witt Hamer PC, Vergani F, et al. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat. 2011;219(4):531–41.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47(6):1083–99.

    Article  PubMed  Google Scholar 

  28. Hagmann P, Cammoun L, Gigandet X, et al. MR connectomics: principles and challenges. J Neurosci Methods. 2010;194(1):34–45.

    Article  PubMed  Google Scholar 

  29. Liu C, Bammer R, Acar B, Moseley ME. Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magn Reson Med. 2004;51(5):924–37.

    Article  PubMed  Google Scholar 

  30. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.

    Article  PubMed  Google Scholar 

  31. Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex. 2012;48(1):82–96.

    Article  PubMed  Google Scholar 

  32. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Berman JI, Lanza MR, Blaskey L, Edgar JC, Roberts TP. High angular resolution diffusion imaging probabilistic tractography of the auditory radiation. Am J Neuroradiol. 2013;34(8):1573–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T. MR tractography: a review of its clinical applications. Magn Reson Med Sci. 2009;8(4):165–74.

    Article  PubMed  Google Scholar 

  35. Feigl GC, Hiergeist W, Fellner C, et al. Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg. 2014;81(1):144–50.

    Article  PubMed  Google Scholar 

  36. Burgel U, Madler B, Honey CR, Thron A, Gilsbach J, Coenen VA. Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cen Eur Neurosurg. 2009;70(1):27–35.

    Article  CAS  Google Scholar 

  37. Duffau H. Diffusion tensor imaging is a research and educational tool, but not yet a clinical tool. World Neurosurg. 2014;82(1–2):e43–5.

    Article  PubMed  Google Scholar 

  38. Mori S. Introduction to diffusion tensor imaging. Oxford, UK: Elsevier; 2007.

    Google Scholar 

  39. Gierhan SM. Connections for auditory language in the human brain. Brain Lang. 2013;127(2):205–21.

    Article  PubMed  Google Scholar 

  40. Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H. Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct. 2013;218(1):21–37.

    Article  PubMed  Google Scholar 

  41. Wieshmann UC, Symms MR, Parker GJ, et al. Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. J Neurol Neurosurg Psychiatry. 2000;68(4):501–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M. Clinical applications of diffusion tensor imaging. World Neurosurg. 2014;82(1–2):96–109.

    Article  PubMed  Google Scholar 

  43. Abdullah KG, Lubelski D, Nucifora PG, Brem S. Use of diffusion tensor imaging in glioma resection. Neurosurg Focus. 2013;34(4):E1.

    Article  PubMed  Google Scholar 

  44. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage. 2006;30(4):1219–29.

    Article  PubMed  Google Scholar 

  45. Bello L, Castellano A, Fava E, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus. 2010;28(2), E6.

    Article  PubMed  Google Scholar 

  46. Foerster O. The cerebral cortex in man. Lancet. 1931;218(5632):309–12.

    Article  Google Scholar 

  47. Foerster OPW. The structural basis of traumatic epilepsy and results of radical operations. Brain. 1930;53(2):99–119.

    Article  Google Scholar 

  48. Cushing H. A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain. 1909;32(1):44e53.

    Article  Google Scholar 

  49. Taylor MD, Bernstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999;90(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  50. Serletis D, Bernstein M. Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg. 2007;107(1):1–6.

    Article  PubMed  Google Scholar 

  51. Bernstein M. Outpatient craniotomy for brain tumor: a pilot feasibility study in 46 patients. Can J Neurol Sci. 2001;28(2):120–4.

    CAS  PubMed  Google Scholar 

  52. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358(1):18–27.

    Article  CAS  PubMed  Google Scholar 

  53. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):2559–65.

    Article  PubMed  Google Scholar 

  54. Chang EF, Clark A, Smith JS, et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article. J Neurosurg. 2011;114(3):566–73.

    Article  PubMed  Google Scholar 

  55. Duffau H, Lopes M, Arthuis F, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry. 2005;76(6):845–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Duffau H, Peggy Gatignol ST, Mandonnet E, Capelle L, Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg. 2008;109(3):461–71.

    Article  PubMed  Google Scholar 

  57. Ohue S, Kohno S, Inoue A, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery. 2012;70(2):283–93. discussion 294.

    Article  PubMed  Google Scholar 

  58. Roessler K, Donat M, Lanzenberger R, et al. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry. 2005;76(8):1152–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Sanai N, Berger MS. Intraoperative stimulation techniques for functional pathway preservation and glioma resection. Neurosurg Focus. 2010;28(2):E1.

    Article  PubMed  Google Scholar 

  60. Kombos T, Suess O, Kern BC, et al. Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta Neurochir. 1999;141(12):1295–301.

    Article  CAS  PubMed  Google Scholar 

  61. Duffau H, Capelle L, Sichez N, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 2002;125(Pt 1):199–214.

    Article  PubMed  Google Scholar 

  62. Penfield WEB. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60(4):389–443.

    Article  Google Scholar 

  63. Haglund MM, Ojemann GA, Blasdel GG. Optical imaging of bipolar cortical stimulation. J Neurosurg. 1993;78(5):785–93.

    Article  CAS  PubMed  Google Scholar 

  64. Pudenz RH, Bullara LA, Jacques S, Hambrecht FT. Electrical stimulation of the brain. III. The neural damage model. Surg Neurol. 1975;4(4):389–400.

    CAS  PubMed  Google Scholar 

  65. Gordon B, Lesser RP, Rance NE, et al. Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation. Electroencephalogr Clin Neurophysiol. 1990;75(5):371–7.

    Article  CAS  PubMed  Google Scholar 

  66. Fernandez Coello A, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg. 2013;119(6):1380–94.

    Article  PubMed  Google Scholar 

  67. Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H. Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp. 2013;34(11):3023–30.

    Article  PubMed  Google Scholar 

  68. Yingling CD, Ojemann S, Dodson B, Harrington MJ, Berger MS. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg. 1999;91(6):922–7.

    Article  CAS  PubMed  Google Scholar 

  69. Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112(3):503–11.

    Article  PubMed  Google Scholar 

  70. Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain. 2005;128(Pt 4):797–810.

    Article  PubMed  Google Scholar 

  71. Borchers S, Himmelbach M, Logothetis N, Karnath HO. Direct electrical stimulation of human cortex – the gold standard for mapping brain functions? Nat Rev Neurosci. 2012;13(1):63–70.

    CAS  Google Scholar 

  72. Szelenyi A, Senft C, Jardan M, et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol. 2011;122(7):1470–5.

    Article  CAS  PubMed  Google Scholar 

  73. Axelson HW, Hesselager G, Flink R. Successful localization of the Broca area with short-train pulses instead of “Penfield” stimulation. Seizure. 2009;18(5):374–5.

    Article  PubMed  Google Scholar 

  74. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  75. Szelenyi A, Joksimovic B, Seifert V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol. 2007;24(1):39–43.

    Article  PubMed  Google Scholar 

  76. Sala F, Lanteri P. Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci. 2003;47(2):79–88.

    CAS  PubMed  Google Scholar 

  77. Patton HD, Amassian VE. Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol. 1954;17(4):345–63.

    CAS  PubMed  Google Scholar 

  78. Deletis V, Sala F. Subcortical stimulation (mapping) of the corticospinal tract. Clin Neurophysiol. 2011;122(7):1275–6.

    Article  PubMed  Google Scholar 

  79. Schuhmann T, Schiller NO, Goebel R, Sack AT. The temporal characteristics of functional activation in Broca’s area during overt picture naming. Cortex. 2009;45(9):1111–6.

    Article  PubMed  Google Scholar 

  80. Schuhmann T, Schiller NO, Goebel R, Sack AT. Speaking of which: dissecting the neurocognitive network of language production in picture naming. Cereb Cortex. 2012;22(3):701–9.

    Article  PubMed  Google Scholar 

  81. Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014;120(5):1015–24.

    Article  PubMed  Google Scholar 

  82. Rubino PA, Rhoton Jr AL, Tong X, Oliveira E. Three-dimensional relationships of the optic radiation. Neurosurgery. 2005;57(4 Suppl):219–27. discussion 219–27.

    PubMed  Google Scholar 

  83. Ribas EC, Yagmurlu K, Wen HT, Rhoton Jr AL. Microsurgical anatomy of the inferior limiting insular sulcus and the temporal stem. J Neurosurg. 2015;122(6):1263–73.

    Article  PubMed  Google Scholar 

  84. Martino J, Vergani F, Robles SG, Duffau H. New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery. 2010;66(3 Suppl Operative):4–12.

    PubMed  Google Scholar 

  85. Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 2012;117(3):466–73.

    Article  PubMed  Google Scholar 

  86. Parraga RG, Ribas GC, Welling LC, Alves RV, de Oliveira E. Microsurgical anatomy of the optic radiation and related fibers in 3-dimensional images. Neurosurgery. 2012;71(1 Suppl Operative):160–71. discussion 171–2.

    PubMed  Google Scholar 

  87. Sincoff EH, Tan Y, Abdulrauf SI. White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg. 2004;101(5):739–46.

    Article  PubMed  Google Scholar 

  88. Krolak-Salmon P, Guenot M, Tiliket C, et al. Anatomy of optic nerve radiations as assessed by static perimetry and MRI after tailored temporal lobectomy. Br J Ophthalmol. 2000;84(8):884–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Ebeling U, Reulen HJ. Neurosurgical topography of the optic radiation in the temporal lobe. Acta Neurochir. 1988;92(1–4):29–36.

    Article  CAS  PubMed  Google Scholar 

  90. Sherbondy AJ, Dougherty RF, Napel S, Wandell BA. Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis. 2008;8(10):12.1–11.

    Google Scholar 

  91. Coenen VA, Huber KK, Krings T, Weidemann J, Gilsbach JM, Rohde V. Diffusion-weighted imaging-guided resection of intracerebral lesions involving the optic radiation. Neurosurg Rev. 2005;28(3):188–95.

    Article  CAS  PubMed  Google Scholar 

  92. Nimsky C, Ganslandt O, Fahlbusch R. Implementation of fiber tract navigation. Neurosurgery. 2007;61(1 Suppl):306–17. discussion 317–8.

    PubMed  Google Scholar 

  93. Taoka T, Sakamoto M, Nakagawa H, et al. Diffusion tensor tractography of the Meyer loop in cases of temporal lobe resection for temporal lobe epilepsy: correlation between postsurgical visual field defect and anterior limit of Meyer loop on tractography. AJNR. Am J Neuroradiol. 2008;29(7):1329–34.

    Article  CAS  PubMed  Google Scholar 

  94. Lee HW, Hong SB, Seo DW, Tae WS, Hong SC. Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology. 2000;54(4):849–54.

    Article  CAS  PubMed  Google Scholar 

  95. Duffau H, Velut S, Mitchell MC, Gatignol P, Capelle L. Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations. Acta Neurochir. 2004;146(3):265–9. discussion 269–70.

    Article  CAS  PubMed  Google Scholar 

  96. Chan-Seng E, Moritz-Gasser S, Duffau H. Awake mapping for low-grade gliomas involving the left sagittal stratum: anatomofunctional and surgical considerations. J Neurosurg. 2014;120(5):1069–77.

    Article  PubMed  Google Scholar 

  97. Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008;1142:266–309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Makris N, Worth AJ, Sorensen AG, et al. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;42(6):951–62.

    Article  CAS  PubMed  Google Scholar 

  99. Duffau H. The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia. 2008;46(4):927–34.

    Article  PubMed  Google Scholar 

  100. Lehericy S, Ducros M, Van de Moortele PF, et al. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol. 2004;55(4):522–9.

    Article  PubMed  Google Scholar 

  101. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17(1):77–94.

    Article  PubMed  Google Scholar 

  102. Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML. Severe nonfluency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain. 1989;112(Pt 1):1–38.

    Article  PubMed  Google Scholar 

  103. Catani M, Mesulam MM, Jakobsen E, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136(Pt 8):2619–28.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Catani M, Dell’acqua F, Vergani F, et al. Short frontal lobe connections of the human brain. Cortex. 2012;48(2):273–91.

    Article  PubMed  Google Scholar 

  105. Lawes IN, Barrick TR, Murugam V, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39(1):62–79.

    Article  PubMed  Google Scholar 

  106. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, et al. A lateralized brain network for visuospatial attention. Nat Neurosci. 2011;14(10):1245–6.

    Article  CAS  PubMed  Google Scholar 

  107. Kinoshita M, Shinohara H, Hori O, et al. Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg. 2012;116(2):323–30.

    Article  PubMed  Google Scholar 

  108. Fujii M, Maesawa S, Motomura K, et al. Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca’s area in the dominant hemisphere of patients with glioma. J Neurosurg. 2015;122(6):1390–6.

    Article  PubMed  Google Scholar 

  109. Yagmurlu K, Vlasak AL, Rhoton Jr AL. Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery. 2015;11 Suppl 1:274–305.

    Article  PubMed  Google Scholar 

  110. Martino J, De Lucas EM. Subcortical anatomy of the lateral association fascicles of the brain: a review. Clin Anat. 2014;27(4):563–9.

    Article  PubMed  Google Scholar 

  111. Weiller C, Bormann T, Saur D, Musso M, Rijntjes M. How the ventral pathway got lost: and what its recovery might mean. Brain Lang. 2011;118(1–2):29–39.

    Article  PubMed  Google Scholar 

  112. Frey S, Campbell JS, Pike GB, Petrides M. Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci. 2008;28(45):11435–44.

    Article  CAS  PubMed  Google Scholar 

  113. Galantucci S, Tartaglia MC, Wilson SM, et al. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011;134(Pt 10):3011–29.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Martino J, da Silva-Freitas R, Caballero H, Marco de Lucas E, Garcia-Porrero JA, Vazquez-Barquero A. Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery. 2013;72(1 Suppl Operative):87–97. discussion 88–97.

    PubMed  Google Scholar 

  115. Matsumoto R, Nair DR, LaPresto E, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004;127(Pt 10):2316–30.

    Article  PubMed  Google Scholar 

  116. Martino J, De Witt Hamer PC, Berger MS, et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. 2013;218(1):105–21.

    Article  PubMed  Google Scholar 

  117. De Benedictis A, Sarubbo S, Duffau H. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation. J Neurosurg. 2012;117(6):1053–69.

    Article  PubMed  Google Scholar 

  118. Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128(Pt 10):2224–39.

    Article  PubMed  Google Scholar 

  119. Gharabaghi A, Kunath F, Erb M, et al. Perisylvian white matter connectivity in the human right hemisphere. BMC Neurosci. 2009;10:15.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Catani M, Allin MP, Husain M, et al. Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci U S A. 2007;104(43):17163–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Thiebaut de Schotten M, Ffytche DH, Bizzi A, et al. Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage. 2011;54(1):49–59.

    Article  PubMed  Google Scholar 

  122. Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo. DT-MRI study. Cereb Cortex. 2005;15(6):854–69.

    Article  PubMed  Google Scholar 

  123. Kaplan E, Naeser MA, Martin PI, et al. Horizontal portion of arcuate fasciculus fibers track to pars opercularis, not pars triangularis, in right and left hemispheres: a DTI study. Neuroimage. 2010;52(2):436–44.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Glasser MF, Rilling JK. DTI tractography of the human brain’s language pathways. Cereb Cortex. 2008;18(11):2471–82.

    Article  PubMed  Google Scholar 

  125. Saur D, Schelter B, Schnell S, et al. Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. Neuroimage. 2010;49(4):3187–97.

    Article  PubMed  Google Scholar 

  126. Bernal B, Altman N. The connectivity of the superior longitudinal fasciculus: a tractography DTI study. Magn Reson Imaging. 2010;28(2):217–25.

    Article  PubMed  Google Scholar 

  127. Berthier ML, Lambon Ralph MA, Pujol J, Green C. Arcuate fasciculus variability and repetition: the left sometimes can be right. Cortex. 2012;48(2):133–43.

    Article  PubMed  Google Scholar 

  128. Bizzi A, Nava S, Ferre F, et al. Aphasia induced by gliomas growing in the ventrolateral frontal region: assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex. 2012;48(2):255–72.

    Article  PubMed  Google Scholar 

  129. Lichtheim L. On aphasia. Brain Lang. 1885;7:433–84.

    Article  Google Scholar 

  130. Boatman D, Gordon B, Hart J, Selnes O, Miglioretti D, Lenz F. Transcortical sensory aphasia: revisited and revised. Brain. 2000;123(Pt 8):1634–42.

    Article  PubMed  Google Scholar 

  131. Schiff HB, Alexander MP, Naeser MA, Galaburda AM. Aphemia. Clinical-anatomic correlations. Arch Neurol. 1983;40(12):720–7.

    Article  CAS  PubMed  Google Scholar 

  132. Freedman M, Alexander MP, Naeser MA. Anatomic basis of transcortical motor aphasia. Neurology. 1984;34(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  133. McCarthy R, Warrington EK. A two-route model of speech production. Evidence from aphasia. Brain. 1984;107(Pt 2):463–85.

    Article  PubMed  Google Scholar 

  134. Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014;131:1–10.

    Article  PubMed  Google Scholar 

  135. Davtian M, Ulmer JL, Mueller WM, Gaggl W, Mulane MP, Krouwer HG. The superior longitudinal fasciculus and speech arrest. J Comput Assist Tomogr. 2008;32(3):410–4.

    Article  PubMed  Google Scholar 

  136. Duffau H, Gatignol P, Moritz-Gasser S, Mandonnet E. Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J Neurol. 2009;256(3):382–9.

    Article  PubMed  Google Scholar 

  137. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.

    Article  CAS  PubMed  Google Scholar 

  138. Rizzolatti G, Matelli M. Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res. 2003;153(2):146–57.

    Article  PubMed  Google Scholar 

  139. Karnath HO, Perenin MT. Cortical control of visually guided reaching: evidence from patients with optic ataxia. Cereb Cortex. 2005;15(10):1561–9.

    Article  PubMed  Google Scholar 

  140. Blangero A, Ota H, Rossetti Y, et al. Systematic retinotopic reaching error vectors in unilateral optic ataxia. Cortex. 2010;46(1):77–93.

    Article  PubMed  Google Scholar 

  141. Doricchi F, Thiebaut de Schotten M, Tomaiuolo F, Bartolomeo P. White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex. 2008;44(8):983–95.

    Article  PubMed  Google Scholar 

  142. Loui P, Alsop D, Schlaug G. Tone deafness: a new disconnection syndrome? J Neurosci. 2009;29(33):10215–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Herbet G, Lafargue G, Bonnetblanc F, Moritz-Gasser S, Menjot de Champfleur N, Duffau H. Inferring a dual-stream model of mentalizing from associative white matter fibres disconnection. Brain. 2014;137(Pt 3):944–59.

    Article  PubMed  Google Scholar 

  144. Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci. 2010;11(4):264–74.

    Article  CAS  PubMed  Google Scholar 

  145. Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN. Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo. DT-MRI study. Cereb Cortex. 2009;19(4):777–85.

    Article  PubMed Central  PubMed  Google Scholar 

  146. De Witt Hamer PC, Moritz-Gasser S, Gatignol P, Duffau H. Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp. 2011;32(6):962–73.

    Article  PubMed  Google Scholar 

  147. Fernandez-Miranda JC, Rhoton Jr AL, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 Suppl 3):989–1026. discussion 1026–28.

    PubMed  Google Scholar 

  148. Catani M, Jones DK, Donato R, Ffytche DH. Occipito-temporal connections in the human brain. Brain. 2003;126(Pt 9):2093–107.

    Article  PubMed  Google Scholar 

  149. Epelbaum S, Pinel P, Gaillard R, et al. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex. 2008;44(8):962–74.

    Article  PubMed  Google Scholar 

  150. Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain. 2007;130(Pt 3):623–9.

    Article  PubMed  Google Scholar 

  151. Mandonnet E, Gatignol P, Duffau H. Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg. 2009;111(7):601–5.

    Article  PubMed  Google Scholar 

  152. Fox CJ, Iaria G, Barton JJ. Disconnection in prosopagnosia and face processing. Cortex. 2008;44(8):996–1009.

    Article  PubMed  Google Scholar 

  153. Rudrauf D, Mehta S, Grabowski TJ. Disconnection’s renaissance takes shape: formal incorporation in group-level lesion studies. Cortex. 2008;44(8):1084–96.

    Article  PubMed  Google Scholar 

  154. Gil-Robles S, Carvallo A, Jimenez Mdel M, et al. Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation. Neurosurgery. 2013;72(4):678–86.

    Article  PubMed  Google Scholar 

  155. Gaillard R, Naccache L, Pinel P, et al. Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron. 2006;50(2):191–204.

    Article  CAS  PubMed  Google Scholar 

  156. Ebeling U, von Cramon D. Topography of the uncinate fascicle and adjacent temporal fiber tracts. Acta Neurochir. 1992;115(3–4):143–8.

    CAS  PubMed  Google Scholar 

  157. Rempel-Clower NL, Barbas H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex. 2000;10(9):851–65.

    Article  CAS  PubMed  Google Scholar 

  158. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain. 2013;136(Pt 6):1692–707.

    Article  Google Scholar 

  159. Moritz-Gasser S, Herbet G, Duffau H. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia. 2013;51(10):1814–22.

    Article  PubMed  Google Scholar 

  160. Papagno C, Miracapillo C, Casarotti A, et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain. 2011;134(Pt 2):405–14.

    Article  PubMed  Google Scholar 

  161. Curran E. A new association fiber tract in the cerebrum. J Comp Neurol. 1909;19:645–56.

    Google Scholar 

  162. Martino J, Brogna C, Robles SG, Vergani F, Duffau H. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex. 2010;46(5):691–9.

    Article  PubMed  Google Scholar 

  163. Makris N, Pandya DN. The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct. 2009;213(3):343–58.

    Article  PubMed Central  PubMed  Google Scholar 

  164. Petrides M, Cadoret G, Mackey S. Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature. 2005;435(7046):1235–8.

    Article  CAS  PubMed  Google Scholar 

  165. Griffiths JD, Marslen-Wilson WD, Stamatakis EA, Tyler LK. Functional organization of the neural language system: dorsal and ventral pathways are critical for syntax. Cereb Cortex. 2013;23(1):139–47.

    Article  PubMed Central  PubMed  Google Scholar 

  166. Plaza M, Gatignol P, Cohen H, Berger B, Duffau H. A discrete area within the left dorsolateral prefrontal cortex involved in visual-verbal incongruence judgment. Cereb Cortex. 2008;18(6):1253–9.

    Article  PubMed  Google Scholar 

  167. Khan OH, Herbet G, Moritz-Gasser S, Duffau H. The role of left inferior fronto-occipital fascicle in verbal perseveration: a brain electrostimulation mapping study. Brain Topogr. 2014;27(3):403–11.

    Article  PubMed  Google Scholar 

  168. Heilbronner SR, Haber SN. Frontal cortical and subcortical projections provide a basis for segmenting the cingulum bundle: implications for neuroimaging and psychiatric disorders. J Neurosci. 2014;34(30):10041–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Kahneman D, Lovallo D, Sibony O. Before you make that big decision. Harv Bus Rev. 2011;89(6):50–60. 137.

    PubMed  Google Scholar 

  170. Qin P, Northoff G. How is our self related to midline regions and the default-mode network? Neuroimage. 2011;57(3):1221–33.

    Article  PubMed  Google Scholar 

  171. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  172. Keedwell PA, Chapman R, Christiansen K, Richardson H, Evans J, Jones DK. Cingulum white matter in young women at risk of depression: the effect of family history and anhedonia. Biol Psychiatry. 2012;72(4):296–302.

    Article  PubMed  Google Scholar 

  173. Wang F, Jackowski M, Kalmar JH, et al. Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging. Br J Psychiatry. 2008;193(2):126–9.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Kaneko N, Boling WW, Shonai T, et al. Delineation of the safe zone in surgery of sylvian insular triangle: morphometric analysis and magnetic resonance imaging study. Neurosurgery. 2012;70(2 Suppl Operative):290–8. discussion 298–299.

    PubMed  Google Scholar 

  175. Skirboll SS, Ojemann GA, Berger MS, Lettich E, Winn HR. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996;38(4):678–84. discussion 684–5.

    Article  CAS  PubMed  Google Scholar 

  176. Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg. 2004;100(3):369–75.

    Article  PubMed  Google Scholar 

  177. Mikuni N, Okada T, Enatsu R, et al. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg. 2007;106(4):593–8.

    Article  PubMed  Google Scholar 

  178. Eisner W, Burtscher J, Bale R, et al. Use of neuronavigation and electrophysiology in surgery of subcortically located lesions in the sensorimotor strip. J Neurol Neurosurg Psychiatry. 2002;72(3):378–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Carrabba G, Fava E, Giussani C, et al. Cortical and subcortical motor mapping in rolandic and perirolandic glioma surgery: impact on postoperative morbidity and extent of resection. J Neurosurg Sci. 2007;51(2):45–51.

    CAS  PubMed  Google Scholar 

  180. Petrides M, Pandya DN. Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol. 2009;7(8), e1000170.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  181. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex. 2012;48(1):46–57.

    Article  PubMed  Google Scholar 

  182. Catani M, Jones DK, Ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57(1):8–16.

    Article  PubMed  Google Scholar 

  183. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402.

    Article  CAS  PubMed  Google Scholar 

  184. Holodny AI, Ollenschleger MD, Liu WC, Schulder M, Kalnin AJ. Identification of the corticospinal tracts achieved using blood-oxygen-level-dependent and diffusion functional MR imaging in patients with brain tumors. Am J Neuroradiol. 2001;22(1):83–8.

    CAS  PubMed  Google Scholar 

  185. Mori S, Frederiksen K, van Zijl PC, et al. Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol. 2002;51(3):377–80.

    Article  PubMed  Google Scholar 

  186. Clark CA, Barrick TR, Murphy MM, Bell BA. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage. 2003;20(3):1601–8.

    Article  PubMed  Google Scholar 

  187. Hendler T, Pianka P, Sigal M, et al. Delineating gray and white matter involvement in brain lesions: three-dimensional alignment of functional magnetic resonance and diffusion-tensor imaging. J Neurosurg. 2003;99(6):1018–27.

    Article  PubMed  Google Scholar 

  188. Mamata Y, Mamata H, Nabavi A, et al. Intraoperative diffusion imaging on a 0.5 Tesla interventional scanner. J Magn Reson Imaging. 2001;13(1):115–9.

    Article  CAS  PubMed  Google Scholar 

  189. Nimsky C, Ganslandt O, Hastreiter P, et al. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery. 2005;56(1):130–7. discussion 138.

    PubMed  Google Scholar 

  190. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935–48. discussion 948–9.

    Article  PubMed  Google Scholar 

  191. Kinoshita M, Yamada K, Hashimoto N, et al. Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage. 2005;25(2):424–9.

    Article  PubMed  Google Scholar 

  192. Kamada K, Todo T, Masutani Y, et al. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg. 2005;102(4):664–72.

    Article  PubMed  Google Scholar 

  193. Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101(1):66–72.

    Article  PubMed  Google Scholar 

  194. Bello L, Gambini A, Castellano A, et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39(1):369–82.

    Article  PubMed  Google Scholar 

  195. Okada T, Mikuni N, Miki Y, et al. Corticospinal tract localization: integration of diffusion-tensor tractography at 3-T MR imaging with intraoperative white matter stimulation mapping – preliminary results. Radiology. 2006;240(3):849–57.

    Article  PubMed  Google Scholar 

  196. Gonzalez-Darder JM, Gonzalez-Lopez P, Talamantes F, et al. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010;28(2), E5.

    Article  PubMed  Google Scholar 

  197. Bello L, Gallucci M, Fava M, et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery. 2007;60(1):67–80. discussion 80–2.

    Article  PubMed  Google Scholar 

  198. Duffau H, Denvil D, Capelle L. Absence of movement disorders after surgical resection of glioma invading the right striatum. J Neurosurg. 2002;97(2):363–9.

    Article  PubMed  Google Scholar 

  199. Duffau H, Capelle L, Denvil D, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg. 2003;98(4):764–78.

    Article  PubMed  Google Scholar 

  200. Krammer MJ, Wolf S, Schul DB, Gerstner W, Lumenta CB. Significance of intraoperative motor function monitoring using transcranial electrical motor evoked potentials (MEP) in patients with spinal and cranial lesions near the motor pathways. Br J Neurosurg. 2009;23(1):48–55.

    Article  PubMed  Google Scholar 

  201. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013;118(2):287–96.

    Article  PubMed  Google Scholar 

  202. Neuloh G, Pechstein U, Schramm J. Motor tract monitoring during insular glioma surgery. J Neurosurg. 2007;106(4):582–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan H. Friedman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miller, T.D., Komisarow, J.M., Friedman, A.H. (2016). White Matter Tracts. In: Byrne, R. (eds) Functional Mapping of the Cerebral Cortex. Springer, Cham. https://doi.org/10.1007/978-3-319-23383-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23383-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23382-6

  • Online ISBN: 978-3-319-23383-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics