Skip to main content

Strong Spatial Cognition

  • Conference paper
  • First Online:
Spatial Information Theory (COSIT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9368))

Included in the following conference series:

Abstract

The ability to perform spatial tasks is crucial for everyday life and of great importance to cognitive agents such as humans, animals, and autonomous robots. Natural embodied and situated agents often solve spatial tasks without detailed knowledge about geometric, topological, or mechanical laws; they directly relate actions to effects enabled by spatio-temporal affordances in their bodies and their environments. Accordingly, we propose a cognitive processing paradigm that makes the spatio-temporal substrate an integral part of the problem-solving engine. We show how spatial and temporal structures in body and environment can support and replace reasoning effort in computational processes: physical manipulation and perception in spatial environments substitute formal computation, in this approach. The strong spatial cognition paradigm employs affordance-based object-level problem solving to complement knowledge-level computation. The paper presents proofs of concept by providing physical spatial solutions to familiar spatial problems for which no equivalent computational solutions are known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)

    Article  MATH  Google Scholar 

  • Bajcsy, R.: Active perception. Proc. IEEE 76, 996–1005 (1988)

    Article  Google Scholar 

  • Balbiani, P., Condotta, J.F., Ligozat, G.: Reasoning about generalized intervals: Horn representability and tractability. In: TIME 2000, pp. 23–29 (2000)

    Google Scholar 

  • Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  • Brooks, R.A.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  • Chandrasekaran, B.: Multimodal cognitive architecture: Making perception more central to intelligent behavior. In: Proceedings of the AAAI, pp. 1508–1512 (2006)

    Google Scholar 

  • Chomsky, N.: Formal properties of grammar. In: Luce, R.D., Bush, R.R., Galanter, E. (eds.) Handbook of Mathematical Psychology II, pp. 323–418. John Wiley and Sons, London (1963)

    Google Scholar 

  • Clancey, W.: Situated Cognition: on Human Knowledge and Computer Representations. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta informaticae 46(1), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  • Davis, E.: Representations of Commonsense Knowledge. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  • Descartes, R.: Discourse on the method, Part VI. In: Newby, I., Newby, G. (prods.) The Project Gutenberg EBook 2008, #59 (1637)

    Google Scholar 

  • Dewdney, A.K.: The Armchair Universe. W.H. Freeman and Company, San Francisco (1988)

    Google Scholar 

  • Dirlich, G., Freksa, C., Furbach, U.: A central problem in representing human knowledge in artificial systems: The transformation of intrinsic into extrinsic representations. In: Proceedings of the 5th Cognitive Science Conference, Rochester (1983)

    Google Scholar 

  • Dreyfus, H.L.: What Computers Can’t Do. The Limits of Artificial Intelligence, Revised edn. Harper and Row, New York (1979)

    Google Scholar 

  • Dubba, K.S.R., Cohn, A.G., Hogg, D.C., Bhatt, M., Dylla, F.: Learning relational event models from video. J. Artif. Intell. Res. 53, 41–90 (2015)

    MathSciNet  MATH  Google Scholar 

  • Dylla, F., Mossakowski, T., Schneider, T., Wolter, D.: Algebraic properties of qualitative spatio-temporal calculi. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 516–536. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  • Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. Intern. J. Geogr. Inf. Syst. 5(2), 161–174 (1991)

    Article  Google Scholar 

  • Falomir, Z., Museros Cabedo, L., Castelló, V., González Abril, L.: Qualitative distances and qualitative image descriptions for representing indoor scenes in robotics. Pattern Recogn. Lett. 34(7), 731–743 (2013)

    Article  Google Scholar 

  • Feigenbaum, E., Feldman, J.: Computers and Thought. McGraw-Hill, New York (1963)

    MATH  Google Scholar 

  • Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M., Travé-Massuyès, L. (eds.) Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991a)

    Google Scholar 

  • Freksa, C.: Qualitative spatial reasoning. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 361–372. Kluwer, Dordrecht (1991b)

    Chapter  Google Scholar 

  • Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) GIS 1992. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  • Freksa, C.: Spatial and Temporal Structures in Cognitive Processes. In: Freksa, C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Science. LNCS, vol. 1337, pp. 379–387. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  • Freksa, C.: Spatial aspects of task-specific wayfinding maps: A representation-theoretic perspective. In: Gero, J.S., Tversky, B. (eds.) Visual and Spatial Reasoning in Design, pp. 15–32. Key Centre of Design Computing and Cognition, University of Sydney, Sydney (1999)

    Google Scholar 

  • Freksa, C.: Spatial computing – How spatial structures replace computational effort. In: Raubal, M., Mark, D., Frank, A. (eds.) Cognitive and Linguistic Aspects of Geographic Space. Springer, Heidelberg (2013)

    Google Scholar 

  • Freksa, C.: Strong spatial cognition (ext. abstract). In: Stewart, K., Pebesma, E., Navratil, G., Fogliaroni, P., Duckham, M. (eds.) Ext. Abstr. Proc. GIScience 2014. GEOinfo 40, 282-285, Vienna. Rev. version in Cognitive Processing 15 (Suppl 1): 103-105 (2014)

    Google Scholar 

  • Freksa, C.: Computational problem solving in spatial substrates – A cognitive systems engineering approach. Int. J. Softw. Inf. 9(2), 279–288 (2015)

    Google Scholar 

  • Freksa, C., Barkowsky, T.: On the relation between spatial concepts and geographic objects. In: Burrough, P., Frank, A. (eds.) Geographic objects with indeterminate boundaries, pp. 109–121. Taylor and Francis, London (1996)

    Google Scholar 

  • Freksa, C., Barkowsky, T.: On the duality and on the integration of propositional and spatial representations. In: Habel, C., Rickheit, G. (eds.) Mental Models in Discourse Processing and Reasoning, pp. 195–212. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  • Freksa, C., Röhrig, R.: Dimensions of qualitative spatial reasoning. In: Piera Carreté, N., Singh, M.G. (eds.) Qualitative Reasoning and Decision Technologies, pp. 483–492. CIMNE, Barcelona (1993)

    Google Scholar 

  • Freksa, C., Schultheis, H.: Three ways of using space. In: Montello, D.R., Grossner, K.E., Janelle, D.G. (eds.) Space in Mind: Concepts for Spatial Education. MIT Press, Cambridge (2014)

    Google Scholar 

  • Freuder, E., Mackworth, A. (eds.): Constraint-Based Reasoning. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  • Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cogn. Sci. 7(2), 155–170 (1983)

    Article  Google Scholar 

  • Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum Associates, New Jersey (1979)

    Google Scholar 

  • Glasgow, J., Narayanan, N.H., Chandrasekaran, B. (eds.): Diagrammatic Reasoning: Cognitive and Computational Perspectives. AAAI Press, Menlo Park (1995)

    Google Scholar 

  • Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.): Diagrammatic Representation and Inference. Springer, Berlin (2010)

    Google Scholar 

  • Guesgen, H.W.: Spatial reasoning based on Allen’s temporal logic, TR-89-049. International Computer Science Institute, Berkeley (1989)

    Google Scholar 

  • Hobbs, J.: Granularity. In: International Joint Conference Artificial Intelligence, pp. 432–435 (1985)

    Google Scholar 

  • Johnson-Laird, P.N.: Mental Models. Harvard University Press, Cambridge (1983)

    Google Scholar 

  • Johnson-Laird, P.N.: Mental models, deductive reasoning, and the brain. In: Gazzaniga, M.S. (ed.) The Cognitive Neurosciences, 65, pp. 999–1008. MIT Press, Cambridge (1995)

    Google Scholar 

  • Knuth, D.: The Art of Computer Programming. Fundamental Algorithms, vol. 1, 3rd edn. Addison-Wesley, Reading (1997)

    MATH  Google Scholar 

  • Kosslyn, S.M.: Image and Mind. Harvard University Press, Cambridge (1980)

    Google Scholar 

  • Kosslyn, S.M.: Image and Brain - The Resolution of the Imagery Debate. MIT Press, Cambridge (1994)

    Google Scholar 

  • Kreutzmann, A., Wolter, D., Dylla, F., Lee, J.H.: Towards safe navigation by formalizing navigation rules. Intern. J. Marine Navig. Saf. Sea Transp. 7(2), 161–168 (2013)

    Article  Google Scholar 

  • Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (1980)

    Google Scholar 

  • Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11, 65–99 (1987)

    Article  Google Scholar 

  • Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Frank, A.U., Campari, I. (eds.) COSIT 1993. LNCS, vol. 716, pp. 54–68. Springer, Heidelberg (1993)

    Google Scholar 

  • Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley, London (2011)

    MATH  Google Scholar 

  • Lungarella, M., Hafner, V., Pfeifer, R., Yokoi, H.: An artificial whisker sensor for robotics. In: IEEE Conference on Intelligent Robots and Systems (IROS), pp. 2931–2936 (2002)

    Google Scholar 

  • Marr, D.: Vision. MIT Press, Cambridge (1982)

    Google Scholar 

  • Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: Horn, W. (ed.) ECAI 2000, pp. 234–238. IOS Press, Amsterdam (2000)

    Google Scholar 

  • Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction of oriented points. Artif. Intell. 180, 34–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. JACM 42(1), 43–66 (1995)

    Article  MATH  Google Scholar 

  • Newell, A., Shaw, J.C., Simon, H.A.: Report on a general problem-solving program. In: Proceedings of the International Conference on Information Processing, pp. 256–264. UNESCO, Paris (1959)

    Google Scholar 

  • Norman, D.A.: The Psychology of Everyday Things. Basic Books Inc., New York (1980)

    Google Scholar 

  • Norman, D.A.: Cognition in the head and in the world: An introduction to the special issue on situated action. Cogn. Sci. 17, 1–6 (1993)

    Article  MathSciNet  Google Scholar 

  • Palmer, S.E.: Fundamental aspects of cognitive representation. In: Rosch, E., Lloyd, B.B. (eds.) Cognition and Categorization, pp. 259–303. Lawrence Erlbaum, Hillsdale (1978)

    Google Scholar 

  • Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)

    Google Scholar 

  • Piaget, J.: The Child’s Conception of the World. Routledge and Kegan Paul Ltd., London (1929)

    Google Scholar 

  • Polya, G.: How to Solve It. Princeton University Press, Princeton (1945)

    MATH  Google Scholar 

  • Pylyshyn, Z.: The role of architecture in theories of cognition. In: VanLehn, K. (ed.) Architectures for Intelligence. Erlbaum, Hillsdale (1988)

    Google Scholar 

  • Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: KR 1992, pp. 165–176 (1992)

    Google Scholar 

  • Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I.E., van Benthem, J.F. (eds.) Handbook of Spatial Logics. Springer, The Netherlands (2007)

    Google Scholar 

  • Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (2010)

    MATH  Google Scholar 

  • Schultheis, H., Barkowsky, T.: Casimir: An architecture for mental spatial knowledge processing. Top. Cogn. Sci. 3, 778–795 (2011)

    Article  Google Scholar 

  • Schultheis, H., Bertel, S., Barkowsky, T.: Modeling mental spatial reasoning about cardinal directions. Cogn. Sci. 38(8), 1521–1561 (2014)

    Article  Google Scholar 

  • Searle, J.: Minds, brains, and programs. Behav. Brain Sci. 3, 417–457 (1980)

    Article  Google Scholar 

  • Simon, H.A.: On the forms of mental representation. In: Savage, W. (ed.) Perception and Cognition, pp. 3–18. University of Minnesota Press, Minneapolis (1978)

    Google Scholar 

  • Sloman, A.: Why we need many knowledge representation formalisms. In: Bramer, M. (ed.) Research and Development in Expert Systems, pp. 163–183. Cambridge University Press, New York (1985)

    Google Scholar 

  • Van de Weghe, N., Kuijpers, B., Bogaert, P., De Maeyer, P.: A qualitative trajectory calculus and the composition of its relations. In: Rodríguez, M., Cruz, I., Egenhofer, M., Levashkin, S. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 60–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Wilson, M.: Six views of embedded cognition. Psychon. Bull. Rev. 9(4), 625–636 (2002)

    Article  Google Scholar 

  • Wintermute, S., Laird, J.E.: Bimodal spatial reasoning with continuous motion. In: Proceedings of the AAAI, pp. 1331–1337 (2008)

    Google Scholar 

  • Wolter, D., Dylla, F., Wölfl, S., Wallgrün, J.O., Frommberger, L., Nebel, B., Freksa, C.: SailAway: Spatial cognition in sea navigation. Künstliche Intelligenz 22(1), 28–30 (2008)

    Google Scholar 

  • Wolter, D., Wallgrün, J.O.: Qualitative spatial reasoning for applications: New challenges and the SparQ toolbox. In: Hazarika, S.M. (ed.) Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, pp. 336–362. IGI Global (2012)

    Google Scholar 

  • Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18 (1979)

    Google Scholar 

  • Zimmermann, K.: Measuring without measures: The Δ-calculus. In: Frank, A.U., Kuhn, W. (eds.) COSIT 1995. LNCS, vol. 988, pp. 59–67. Springer, Heidelberg (1995)

    Google Scholar 

Download references

Acknowledgements

Heated discussions with members of the Bremen Cognitive Systems group, in particular Thomas Barkowsky, Ana-Maria Olteteanu, Holger Schultheis, Frank Dylla, Jasper van de Ven, Zoe Falomir, and Loai Ali, as well as with Werner Kuhn promoted this work. Excellent comments and suggestions for improvement by numerous anonymous reviewers are highly appreciated. The German Research Foundation (DFG) supported this work through generous funding for the SFB/TR 8 Spatial Cognition. This paper is dedicated to Gerhard Dirlich and Ulrich Furbach, who set the foundations for this project with me more than thirty years ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Freksa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Freksa, C. (2015). Strong Spatial Cognition. In: Fabrikant, S., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds) Spatial Information Theory. COSIT 2015. Lecture Notes in Computer Science(), vol 9368. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23374-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23373-4

  • Online ISBN: 978-3-319-23374-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics