Skip to main content

Biological Control and Biopesticide Suppression of Botrytis-Incited Diseases

  • Chapter
  • First Online:
Book cover Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

Recent years have seen the development of many biological control agents and other biopesticides, such as plant extracts, minerals and organic compounds, against Botrytis-incited diseases. This chapter presents significant examples of such commercially available products and reviews our increasing comprehension of mechanisms implicated in biological control, including recent breakthroughs on complex interactions between the biocontrol agent, the host plant and the pathogen. Its highlights progress made in characterizing the determinants of efficacy and documents the growing body of knowledge on natural biological control and the potential for its enhancement. Finally, future prospects and challenges are presented, including issues on the durability of biocontrol methods.

The original version of this chapter was revised. An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-23371-0_21

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-23371-0_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abro MA, Lecompte F, Bardin M et al (2014) Nitrogen fertilization impacts biocontrol of tomato gray mold. Agron Sustain Dev 4:641–648

    Article  CAS  Google Scholar 

  • Ahn IP, Lee SW, Suh SC (2007) Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol Plant Microbe Interact 20:759–768

    Article  CAS  PubMed  Google Scholar 

  • Ajouz S, Nicot PC, Bardin M (2010) Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathol 59:556–566

    Article  CAS  Google Scholar 

  • Ajouz S, Walker AS, Fabre F et al (2011) Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. Biocontrol 56:353–363

    Article  CAS  Google Scholar 

  • Alfano G, Ivey MLL, Cakir C et al (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M et al (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp Ps14. Biol Control 65:14–23

    Article  Google Scholar 

  • Antonov A, Stewart A, Walter M (1997) Inhibition of conidium germination and mycelial growth of Botrytis cinerea by natural products. In: Proceedings 50th NZ plant protection conference 159–164

    Google Scholar 

  • Audenaert K, Pattery T, Cornelis P et al (2001) Induced resistance to Botrytis cinerea by Pseudomonas aeruginosa: role of siderophores and pyocyanin. IOBC WPRS Bull 24(3):37–41

    Google Scholar 

  • Bardin M, Comby M, Lenaerts R et al (2013a) Diversity in susceptibility of Botrytis cinerea to biocontrol products inducing plant defence mechanisms. IOBC WPRS Bull 88:45–49

    Google Scholar 

  • Bardin M, Comby M, Troulet C et al (2013b) Relationship between the aggressiveness of Botrytis cinerea on tomato and the efficacy of biocontrol. IOBC WPRS Bull 86:163–168

    Google Scholar 

  • Blakeman JP (1993) Pathogens in the foliar environment. Plant Pathol 42:479–493

    Article  Google Scholar 

  • Buck JW, Jeffers SN (2004) Effect of pathogen aggressiveness and vinclozolin on efficacy of Rhodotorula glutinis PM4 against Botrytis cinerea on geranium leaf disks and seedlings. Plant Dis 88:1262–1268

    Article  Google Scholar 

  • Calvente V, de Orellano ME, Sansone G et al (2001) Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. J Ind Microbiol Biotechnol 26:226–229

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Garrido C, Elmer PAG, Vinas I et al (2013) Biological control of botrytis bunch rot in organic wine grapes with the yeast antagonist Candida sake CPA-1. Plant Pathol 62:510–519

    Article  Google Scholar 

  • Card SD (2005) Biological control of Botrytis cinerea in lettuce and strawberry crops. PhD thesis. Lincoln University

    Google Scholar 

  • Castoria R, Caputo L, de Curtis F et al (2003) Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology 93:564–572

    Article  CAS  PubMed  Google Scholar 

  • Cheng CH, Yang CA, Peng KC (2012) Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology 102:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Crawford DL, Kowalski M, Roberts MA et al (2005) Discovery, development and commercialization of a microbial biocontrol agent Streptomyces lydicus WYEC108: history of a decade long endeavor. SIMS News 55:88–95

    Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y et al (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Decognet V, Trottin-Caudal Y, Fournier C et al (1999) Protection of stem wounds against Botrytis cinerea in heated tomato greenhouses with a strain of Fusarium sp. IOBC WPRS Bull 22(1):53–56

    Google Scholar 

  • Dik AJ, Elad Y (1999) Comparison of antagonists of Botrytis cinerea in greenhouse-grown cucumber and tomato under different climatic conditions. Eur J Plant Pathol 105:123–137

    Article  Google Scholar 

  • Dik AJ, Wubben JP (2007) Epidemiology of Botrytis cinerea diseases in greenhouses. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Springer, Dordrecht

    Google Scholar 

  • Dubos B (1992) Biological control of Botrytis: state-of-the-art. In: Verhoeff K, Malathrakis NE, Williamson B (eds) Recent advances in Botrytis research. Pudoc Scientific Publishers, Wageningen, pp 267–271

    Google Scholar 

  • Dubos B, Jailloux F, Bullit J (1982) Protection du vignoble contre la pourriture grise: les propriétés antagonistes du Trichoderma à l’égard du Botrytis cinerea. Les Colloques de l’INRA 11:205–219

    Google Scholar 

  • Edwards SG, Seddon B (1992) Bacillus brevis as a biocontrol agent against Botrytis cinerea on protected Chinese cabbage. In: Verhoeff K, Malathrakis NE, Williamson B (eds) Recent advances in Botrytis research. Pudoc Scientific Publishers, Wageningen, pp 267–271

    Google Scholar 

  • Elad Y (1996) Mechanisms involved in the biological control of Botrytis cinerea incited diseases. Eur J Plant Pathol 102:719–732

    Article  Google Scholar 

  • Elad Y, Kapat A (1999) Role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  • Elad Y, Stewart A (2004) Microbial control of Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 223–241

    Google Scholar 

  • Elad Y, Zimand G, Zaqs Y et al (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332

    Article  CAS  Google Scholar 

  • Elad Y, Rav David D, Levi T et al (1998) Trichoderma harzianum T39 – mechanisms of biocontrol of foliar pathogens. In: Lyr H, Russell PE, Dehne H-W, Sisler HD (eds) Modern fungicides and antifungal compounds II. Intercept, Aandover, pp 459–467

    Google Scholar 

  • Elad Y, Baker S, Faull JL et al (2004) Multi trophic relationships – interaction of a biocontrol agent and a pathogen with the indigenous micro-flora on bean leaves. IOBC WPRS Bull 27(8):151–154

    Google Scholar 

  • Elad Y, Rav David D, Meller Harel Y et al (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • El-Ghaouth A, Smilanick JL, Wilson CL (2000a) Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol Technol 19:103–110

    Article  CAS  Google Scholar 

  • El-Ghaouth A, Smilanick JL, Wisniewski M et al (2000b) Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2-deoxy-D-glucose. Plant Dis 84:249–253

    Article  CAS  Google Scholar 

  • Ferrari A, Sicher C, Prodorutti D et al (2007) Potential new applications of Shemer, a Metschnikowia fructicola based product, in post-harvest soft fruit rots control. IOBC WPRS Bull 30(6):43–46

    Google Scholar 

  • Fillinger S, Ajouz S, Nicot PC et al (2012) Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS ONE 7(8):e42520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamliel A, Katan J (1991) Involvement of fluorescent pseudomonads and other microorganisms in increased growth response of plants in solarized soils. Phytopathology 81:494–502

    Article  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D et al (1993) Molecular characterization of the proteinase-encoding gene prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  CAS  PubMed  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Graber ER, Meller Harel Y, Kolton M et al (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Guetsky R, Elad Y, Shtienberg D et al (2002a) Improved biocontrol of Botrytis cinerea on detached strawberry leaves by adding nutritional supplements to a mixture of Pichia guilermondii and Bacillus mycoides. Biocontrol Sci Technol 12:625–630

    Article  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y et al (2002b) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    Article  PubMed  Google Scholar 

  • Hannusch DJ, Boland GJ (1996) Interactions of air temperature, relative humidity and biological control agents on grey mold of bean. Eur J Plant Pathol 102:133–142

    Article  Google Scholar 

  • Hermosa R, Viterbo A, Chet I et al (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Ilhan K, Karabulut OA (2013) Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries. Biocontrol 58:457–470

    Article  CAS  Google Scholar 

  • Jackson AM, Whipps JM, Lynch JM et al (1991) Effects of some carbon and nitrogen sources on spore germination, production of biomass and antifungal metabolites by species of Trichoderma and Gliocladium virens antagonistic to Sclerotium cepivorum. Biocontrol Sci Technol 1:43–51

    Article  Google Scholar 

  • Jackson AJ, Walters DR, Marshall G (1994) Antagonistic interactions between the foliar pathogen Botrytis fabae and isolates of Penicillium brevicompactum and Cladosporium cladosporioides on faba beans. Biol Control 8:97–106

    Article  Google Scholar 

  • Janisiewicz WJ, Jeffers SN (1997) Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Prot 16:629–633

    Article  CAS  Google Scholar 

  • Kamensky M, Ovadis M, Chet I et al (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Kapat A, Zimand G, Elad Y (1998) Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycol Res 102:1017–1024

    Article  CAS  Google Scholar 

  • Katan J, DeVay JE (eds) (1991) Soil solarization. CRC Press, Boca Raton

    Google Scholar 

  • Katan J, Gamliel A (2012) Mechanisms of pathogen and disease control and plant-growth improvement involved in soil solarization. In: Gamliel A, Katan J (eds) Soil solarization. APS Press, St. Paul, pp 135–145

    Google Scholar 

  • Köhl J (2004) Biological control of Botrytis spp. by Ulocladium atrum through competitive colonisation of necrotic tissues. Plant Research International B.V, Wageningen

    Google Scholar 

  • Köhl J, Schlösser F (1989) Decay of sclerotia of Botrytis cinerea by Trichoderma spp. at low temperatures. J Phytopathol 125:320–326

    Article  Google Scholar 

  • Köhl J, Fokkema NJ (1993) Fungal interactions on living and necrotic leaves. In: Blakeman JP, Williamson B (eds) Ecology of plant pathogens. CABI, Oxon, pp 321–334

    Google Scholar 

  • Köhl J, Van der Plas CH, Molhoek WML et al (1995) Effect of interrupted leaf wetness periods on suppression of sporulation of Botrytis allii and Botrytis cinerea by antagonists on dead onion leaves. Eur J Plant Pathol 101:627–637

    Article  Google Scholar 

  • Kolton M, Meller Harel Y, Pasternak Z et al (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korolev N, Rav David D, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biocontrol 53:667–683

    Article  CAS  Google Scholar 

  • Kowalska J, Drożdżyński D, Remlein-Starosta D, Sas-Paszt L, Malusá E (2012) Use of Cryptococcus albidus for controlling grey mould in the production and storage of organically grown strawberries. J Plant Dis Prot 119:174–178

    Article  Google Scholar 

  • Labudova I, Gogorova L (1988) Biological control of phytopathogenic fungi through lytic action of Trichoderma species. FEMS Microbiol Lett 52:193–198

    Article  Google Scholar 

  • Lahdenpera ML, Korteniemi M (2008) Application methods for commercial biofungicides in greenhouses. IOBC WPRS Bull 32:111–114

    Google Scholar 

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Article  Google Scholar 

  • Lecompte F, Abro MA, Nicot PC (2010) Contrasted responses of Botrytis cinerea isolates developing on tomato plants grown under different nitrogen nutrition regimes. Plant Pathol 59:891–899

    Article  CAS  Google Scholar 

  • Lecompte F, Abro MA, Nicot PC (2013) Can plant sugars mediate the effect of nitrogen fertilization on lettuce susceptibility to two necrotrophic pathogens: Botrytis cinerea and Sclerotinia sclerotiorum? Plant Soil 369:387–401

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S et al (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    Article  CAS  PubMed  Google Scholar 

  • Li H, Leifert C (1994) Development of resistance in Botryotinia fuckeliana (de Bary) Whetzel against the biological control agent Bacillus subtilis. J Plant Dis Prot 101:414–418

    Google Scholar 

  • Lichatowich T (2007) The plant growth enhancing and biocontrol mechanisms of Streptomyces lydicus WYEC108 and its use in nursery and greenhouse production. USDA Forest Service Proceedings RMRS-P-50, 61–62

    Google Scholar 

  • Liu J, Wisniewski M, Artlip T et al (2013) The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biol Technol 85:203–209

    Article  CAS  Google Scholar 

  • Magnin-Robert M, Quantinet D, Couderchet M et al (2013) Differential induction of grapevine resistance and defense reactions against Botrytis cinerea by bacterial mixtures in vineyards. Biocontrol 58:117–131

    Article  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander et al (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense related genes. Appl Environ Microbiol 78:4856–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mari M, Martini C, Spadoni A et al (2012) Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biol Technol 73:56–62

    Article  Google Scholar 

  • Marrone PG (2002) An effective biofungicide with novel modes of action. Pestic Outlook 13:193–194

    Article  CAS  Google Scholar 

  • Meller Harel Y, Haile Mehari Z, Rav-David D et al (2014) Induced systemic resistance against gray mold in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150–157

    Article  CAS  Google Scholar 

  • Mercier J, Wilson CL (1994) Colonization of apple wounds by naturally occurring microflora and introduced Candida oleophila and their effect on infection by Botrytis cinerea during storage. Biol Control 4:138–144

    Article  Google Scholar 

  • Meyer UM, Fischer E, Barbul O et al (2001) Effect of biocontrol agents on antigens present in the extracellular matrix of Botrytis cinerea, which are important for pathogenesis. IOBC WPRS Bull 24(3):5–9

    Google Scholar 

  • Morandi MAB, Sutton JC, Maffia LA (2000) Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. Eur J Plant Pathol 106:439–448

    Article  Google Scholar 

  • Morandi MAB, Mattos LPV, Santos ER et al (2008) Influence of application time on the establishment, survival, and ability of Clonostachys rosea to suppress Botrytis cinerea sporulation on rose debris. Crop Prot 27:77–83

    Article  Google Scholar 

  • Mounir R, Durieux A, Bodo E et al (2007) Aureobasidium pullulans (1113-5) microbial antagonist for the control of post-harvest decay on apple fruit: development of active biomass formulation at a lab scale. IOBC WPRS Bull 30(6):575–578

    Google Scholar 

  • Navazio L, Baldan B, Moscatiello R et al (2007) Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biol 7:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson ME, Powelson ML (1988) Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Dis 72:727–729

    Article  Google Scholar 

  • Newhook FJ (1957) The relationship of saprophytic antagonism to control of Botrytis cinerea Pers. on tomatoes. N Z J Sci Technol 38:473–481

    Google Scholar 

  • Nguyen T, Bay IS, Abramians AA, Gubler WD (2013) Evaluation of fungicide programs for management of Botrytis bunch rot of grapes: 2013 field trial. http://plantpathology.ucdavis.edu/Cooperative_Extension/Gubler/2013_Fruit_Crop_Fungicide_Trials

  • Nicot PC, Bardin M (2012) Biological and integrated protection in the Mediterranean greenhouse: is disease management the weak link? IOBC WPRS Bull 80:11–17

    Google Scholar 

  • Nicot PC, Decognet V, Fruit L et al (2002) Combined effect of microclimate and dose of application on the efficacy of biocontrol agents for the protection of pruning wounds on tomatoes against Botrytis cinerea. IOBC WPRS Bull 25(10):73–76

    Google Scholar 

  • Nicot PC, Bardin M, Alabouvette C et al (2011) Potential of biological control based on published research. 1. Protection against plant pathogens of selected crops. In: Nicot PC (ed) Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. IOBC/WPRS, Zurich, pp 1–11

    Google Scholar 

  • Nicot PC, Bardin M, Debruyne F et al (2013) Effect of nitrogen fertilisation of strawberry plants on the efficacy of defence-stimulating biocontrol products against Botrytis cinerea. IOBC WPRS Bull 88:39–42

    Google Scholar 

  • Nunes C, Usall J, Teixido N et al (2002a) Improved control of postharvest decay of pears by the combination of Candida sake (CPA-1) and ammonium molybdate. Phytopathology 92:281–287

    Article  PubMed  Google Scholar 

  • Nunes C, Usall J, Teixido N et al (2002b) Control of Penicillium expansum and Botrytis cinerea on apples and pears with the combination of Candida sake and Pantoea agglomerans. J Food Prot 65:178–184

    PubMed  Google Scholar 

  • Okon Levy N, Katan J, Elad Y (2004) Integrated control of foliar infection by soil solarization and Trichoderma. IOBC WPRS Bull 27(8):65–70

    Google Scholar 

  • Okon Levy N, Elad Y, Katan J et al (2005) Trichoderma and soil solarization induced microbial changes on plant surfaces. IOBC WPRS Bull 29(2):21–26

    Google Scholar 

  • Okon Levy N, Meller Harel Y, Haile ZM et al (2015) Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol 64:365–374

    Article  CAS  Google Scholar 

  • Ongena M, Henry G, Thonart P (2010) The role of cyclic lipopetides in the biocontrol activity of Bacillus subtilis. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in the management of plant diseases. Plant Pathology in the 21st Century. Vol 1:59–69

    Google Scholar 

  • Palmieri MC, Perazzolli M, Matafora V et al (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63:6237–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, Sutton JC (1991) Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Can J Plant Pathol 13:247–257

    Article  Google Scholar 

  • Perazzolli M, Dagostin S, Ferrari A et al (2008) Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biol Control 47:228–234

    Article  CAS  Google Scholar 

  • Perazzolli M, Roatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol Control 58:74–82

    Article  Google Scholar 

  • Perazzolli M, Moretto M, Fontana P et al (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics 13:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarles W (2009) Giant knotweed, plant disease protection and immortality. IPM Pract 22:1–6

    Google Scholar 

  • Reeh KW, Cutler GC (2013) Laboratory efficacy and fungicide compatibility of Clonostachys rosea against Botrytis blight on lowbush blueberry. Can J Plant Sci 93:639–642

    Article  Google Scholar 

  • Ruocco M, Woo S, Vinale F et al (2011) Identified difficulties and conditions for field success of biocontrol. 2. Technical aspects: factors of efficacy. In: Nicot PC (ed) Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. IOBC/WPRS, Zurich, pp 45–57

    Google Scholar 

  • Schilder A (2013) Botector: a new biofungicide for control of Botrytis bunch rot of grapes http://msue.anr.msu.edu/news/botector_a_new_biofungicide_for_control_of_botrytis_bunch_rot_in_grapes

  • Schirmböck M, Lorito M, Wang Y et al (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic activity of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    PubMed  PubMed Central  Google Scholar 

  • Schmitt A, Strathmann S, Emslie KA et al (1996) Use of Regalia sachalinensis extracts for induced resistance in integrated disease control: effects on Botrytis cinerea. XIth international Botrytis symp 23–27 June, Wageningen, 69

    Google Scholar 

  • Schmitt A, Ibarra F, Francke W (2005) Resistance inducing constituents in extracts of Reynoutria sachalinensis. In: Dehne HW, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds IV: proceedings of the 14th international Reinhardsbrunn symposium, April 25–29 2004, Friedrichroda, Germany. British Crop Production Council, Alton

    Google Scholar 

  • Schoonbeek HJ, Jacquat-Bovet AC, Mascher F et al (2007) Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Mol Plant Microbe Interact 20:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Casanova E, Borrero C et al (2007) The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. Eur J Plant Pathol 117:393–402

    Article  Google Scholar 

  • Segarra G, Santpere G, Elena G et al (2013) Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis. PLoS One 8(2):e56075. doi:10.1371/journal.pone.0056075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Mastouri F, Harman GE (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Stapleton JJ, DeVay JE (1984) Thermal components of soil solarization as related to changes in soil and root microflora and increased plant growth response. Phytopathology 74:255–259

    Article  Google Scholar 

  • Stevens C, Khan VA, Rodriguez-Kabana R et al (2003) Integration of soil solarization with chemical, biological and cultural control for the management of soilborne disease of vegetables. Plant Soil 253:493–506

    Article  CAS  Google Scholar 

  • Su H (2012) Regalia bioprotectant in plant disease management. Outlook Pest Manag 23:30–34

    Article  Google Scholar 

  • Sylla J, Alsanius BW, Kruger E et al (2013) Leaf microbiota of strawberries as affected by biological control agents. Phytopathology 103:1001–1011

    Article  PubMed  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  PubMed  Google Scholar 

  • Vallad GE, Cooperband L, Goodman RM (2003) Plant foliar disease suppression mediated by composted forms of paper mill residuals exhibits molecular features of induced resistance. Physiol Mol Plant Pathol 63:65–77

    Article  CAS  Google Scholar 

  • Viterbo A, Haran S, Friesem D et al (2001) Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 200:169–174

    Article  CAS  PubMed  Google Scholar 

  • Whiteman SA, Stewart A (1998) Suppression of Botrytis cinerea sporulation on irradiated grape leaf tissue by the antagonistic bacterium Serratia liquefaciens. N Z J Crop Hortic Sci 26:325–330

    Article  Google Scholar 

  • Wood RKS (1951) The control of diseases of lettuce by use if antagonistic organisms. I. The control of Botrytis cinerea Pers. Ann Appl Biol 38:203–216

    Article  Google Scholar 

  • Yang HH, Yang SL, Peng KC et al (2009) Induced proteome of Trichoderma harzianum by Botrytis cinerea. Fungal Biol 113:924–932

    CAS  Google Scholar 

  • Yogev A, Raviv M, Hadar Y et al (2010) Induced resistance as a putative component of compost suppressiveness. Biol Control 54:46–51

    Article  Google Scholar 

  • Yu T, Yu C, Lu HP et al (2012) Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biol Control 61:169–175

    Article  CAS  Google Scholar 

  • Zamani-Zadeh M, Soleimanian-Zad S, Sheikh-Zeinoddin M (2013) Biocontrol of gray mold disease on strawberry fruit by integration of Lactobacillus plantarum A7 with ajwain and cinnamon essential oils. J Food Sci 78:M1582–M1588

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Han DY, Dick WA et al (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang L, Dong Y et al (2007) Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol Control 40:287–292

    Article  Google Scholar 

  • Zhang CL, Zheng BQ, Lao JP et al (2008) Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl Microbiol Biotechnol 78:833–840

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang L, Ma L et al (2009) Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biol Control 48:79–83

    Article  Google Scholar 

  • Zhang H, Ma L, Jiang S et al (2010) Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries. Int J Food Microbiol 141:122–125

    Article  CAS  PubMed  Google Scholar 

  • Zhao LN, Zhang HY, Li J et al (2012) Enhancement of biocontrol efficacy of Pichia carribbica to postharvest diseases of strawberries by addition of trehalose to the growth medium. Int J Mol Sci 13:3916–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LN, Zhang HY, Lin HT et al (2013) Effect of trehalose on the biocontrol efficacy of Pichia caribbica against post-harvest grey mould and blue mould decay of apples. Pest Manag Sci 69:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zimand G, Elad Y, Chet I (1996) Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86:1255–1260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe C. Nicot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nicot, P.C., Stewart, A., Bardin, M., Elad, Y. (2016). Biological Control and Biopesticide Suppression of Botrytis-Incited Diseases. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_9

Download citation

Publish with us

Policies and ethics