Skip to main content

Abstract

In ascomycetes, vegetative compatibility is determined by a series of het or vic genes that exist in two or more allelic states. Strains that carry identical alleles at all loci are compatible; those that differ at one or more loci are incompatible. The genetic basis of vegetative incompatibility in Botrytis cinerea is not known, but is presumed conform to the system found in other ascomycetes. Using nitrate non-utilizing mutants, 66 distinct vegetative compatibility groups (VCGs) were identified among field and single ascospore isolates of B. cinerea, an observation that is consistent with the presence of at least six het genes. Sulphate non-utilizing mutants have also been used to identify multiple VCGs in this species. The large number of VCGs and the limited occurrence of isolates displaying the same VCG suggest that sexual recombination plays an important role in field populations of B. cinerea. Mycelial compatibility groups (MCGs) recognized by the formation of interaction lines between isolates paired on agar media (barrages), indicate incompatibility in B. cinerea, however, there is no direct correlation with VCGs recognized by complementation. Sexual crosses have been shown to generate new B. cinerea VCGs. Unlike the situation in Neurospora crassa, in B. cinerea, the MAT1 locus does not act as a het gene. The homologue of the N. crassa het-c gene has been cloned and sequenced in B. cinerea, but it does not act as a vic gene in B. cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanen DK, Debets AJM, Glass NL, Saupe SJ (2010) Biology and genetics of vegetative incompatibility in fungi. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 274–288

    Chapter  Google Scholar 

  • Amselem J, Cuomo CA, Van Kan JAL et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arst HN (1968) Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature 219:268–270

    Article  CAS  PubMed  Google Scholar 

  • Bayman P, Cotty PJ (1991) Vegetative compatibility and genetic diversity in the Aspergillus flavus population of a single field. Can J Bot 69:1707–1711

    Article  Google Scholar 

  • Beever RE, Parkes SL (1993) Mating behavior and genetics of fungicide resistance of Botrytis cinerea in New Zealand. N Z J Crop Hortic Sci 21:303–310

    Article  Google Scholar 

  • Beever RE, Parkes SL (2003) Use of nitrate non-utilizing (Nit) mutants to determine vegetative compatibility in Botryotinia fuckeliana (Botrytis cinerea). Eur J Plant Pathol 109:607–613

    Article  CAS  Google Scholar 

  • Beever RE, Weeds PL (2004) Taxonomy and genetic variation of Botrytis and Botryotinia. In: Elad Y, Williamson P, Tudzinski P, Delen N (eds) Botrytis: biology pathology and control. Kluwer Academic, Dordrecht, pp 29–52

    Google Scholar 

  • Cao JB, Zjou Y, Zhang L et al (2011) dsRNA-free transmissible hypovirulence associated with formation of intra-hyphal hyphae in Botrytis cinerea. Fungal Biol 115:660–661

    Article  CAS  PubMed  Google Scholar 

  • Castro M, Kramer K, Valdivia L, Ortiz S, Castillo A (2003) A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol Lett 228:87–91

    Article  CAS  PubMed  Google Scholar 

  • Correll JC, Leslie JH (1987) Recovery of spontaneous selenate-resistant mutants from Fusarium oxysporum and Fusarium moniliforme. Phytopathology 77:1710

    Article  Google Scholar 

  • Correll JC, Klittich CJR, Leslie JF (1989) Heterokaryon self-incompatibility in Gibberella fujikuroi (Fusarium moniliforme). Mycol Res 93:21–27

    Article  Google Scholar 

  • Delcan J, Melgarejo P (2002) Mating behaviour and vegetative compatibility in Spanish populations of Botryotinia fuckeliana. Eur J Plant Pathol 108:391–400

    Article  CAS  Google Scholar 

  • Esser K (2006) Heterogenic incompatibility in fungi. In: Kues U, Fisher R (eds) The mycota I. Growth, differentiation and sexuality. Springer, Berlin, pp 141–165

    Chapter  Google Scholar 

  • Faretra F, Pollastro S (1993) Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana (Botrytis cinerea) from nine countries. Plant Pathol 42:48–57

    Article  CAS  Google Scholar 

  • Faretra F, Antonacci E, Pollastro S (1988) Sexual behavior and mating system of Botryotinia fuckeliana (Botrytis cinerea). J Gen Microbiol 134:2543–2550

    Google Scholar 

  • Fisher-Harman V, Jackson KJ, Munoz A et al (2012) Evidence for tryptophan being a signal molecule that inhibits conidial anastomosis tube fusion during colony initiation in Neurospora crassa. Fungal Genet Biol 49:896–902

    Article  Google Scholar 

  • Ford EJ, Miller RV, Gray H, Sherwood JE (1995) Heterokaryon formation and vegetative compatibility in Sclerotinia sclerotiorum. Mycol Res 99:241–247

    Article  Google Scholar 

  • Fournier E, Levis C, Fortini D et al (2003) Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus, and its use as a population marker. Mycologia 95:251–261

    Article  CAS  PubMed  Google Scholar 

  • Fournier E, Giraud T, Albertini K, Brygoo Y (2005) Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia 97:1251–1267

    Article  CAS  PubMed  Google Scholar 

  • Giraud T, Fortini D, Levis C, Brygoo Y (1997) RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements revealed two sympatric species. Mol Biol Evol 14:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Giraud T, Fortini D, Levis C et al (1999) Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology 89:967–973

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Kuldau GA (1992) Mating type and vegetative incompatibility in filamentous ascomycetes. Annu Rev Phytopathol 30:201–224

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Jacobson DJ, Shiu PKT (2000) The genetics of fungal fusion and vegetative incompatibility in filamentous fungi. Annu Rev Genet 34:165–186

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12:135–141

    Article  CAS  PubMed  Google Scholar 

  • Grindle M (1979) Phenotypic differences between natural and induced variants of Botrytis cinerea. J Gen Microbiol 111:109–120

    Article  Google Scholar 

  • Hansen HN (1938) The dual phenomenon in imperfect fungi. Mycologia 30:442–445

    Article  Google Scholar 

  • Hansen HN, Smith RE (1932) The mechanism of variation in imperfect fungi: Botrytis cinerea. Phytopathology 22:953–964

    Google Scholar 

  • Harp TL, Correll JC (1998) Recovery and characterization of spontaneous selenate-resistant mutants of Magnaporthe grisea, the rice blast pathogen. Mycologia 90:954–963

    Article  Google Scholar 

  • Heale JB (1988) Verticillium spp., the cause of vascular wilts in many species. Adv Plant Pathol 6:291–312

    Article  Google Scholar 

  • Howitt RLJ, Beever RE, Pearson MN, Forster RLS (1995) Presence of double-stranded RNA and virus-like particles in Botrytis cinerea. Mycol Res 99:1472–1478

    Article  CAS  Google Scholar 

  • Huber DH (1996) Genetic analysis of vegetative compatibility polymorphisms and horizontal transmission in the chestnut blight fungus Cryphonectria parasitica. PhD dissertation, Michigan State University, East Lansing

    Google Scholar 

  • Hutchinson EA, Glass NL (2012) Programmed cell death and heterokaryon incompatibility in filamentous fungi. In: Wytzany G (ed) Biocommunication of fungi. Springer, Dordrecht, pp 115–138. doi:10.1007/978-94-007-4264-2_8

    Chapter  Google Scholar 

  • Jarvis WR (1977) Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Research Branch, Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Jinks JL (1959) Lethal suppressive cytoplasms in aged clones of Aspergillus glaucus. J Gen Microbiol 21:397–409

    Google Scholar 

  • Korolev N, Gindin G (1999) Vegetative compatibility in the entomopathogen Verticillium lecanii. Mycol Res 103:833–840

    Article  Google Scholar 

  • Korolev N, Katan J, Katan T (2000) Vegetative compatibility groups of Verticillium dahliae in Israel: their distribution and association with pathogenicity. Phytopathology 90:529–536

    Article  CAS  PubMed  Google Scholar 

  • Korolev N, Katan T, Elad Y (2006) Use of selenate-resistant strains as markers for the spread and survival of Botrytis cinerea under greenhouse conditions. Phytopathology 96:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Korolev N, Elad Y, Katan T (2008) Vegetative compatibility grouping in Botrytis cinerea using sulphate non-utilizing mutants. Eur J Plant Pathol 122:369–383

    Article  Google Scholar 

  • Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31:127–150

    Article  CAS  PubMed  Google Scholar 

  • Levis C, Fortini D, Brygoo Y (1997) Transformation of Botrytis cinerea with the nitrate reductase gene (niaD) shows a high frequency of homologous recombination. Curr Genet 32:157–162

    Article  CAS  PubMed  Google Scholar 

  • Lorbeer JW (1980) Variation in Botrytis and Botryotinia. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 19–40

    Google Scholar 

  • Mamiev M, Korolev N, Elad Y (2013) Resistance to polyoxin AL and other fungicides in Botrytis cinerea collected from sweet basil crops in Israel. Eur J Plant Pathol 137:79–91

    Article  CAS  Google Scholar 

  • Marzluf GA (1970) Genetic and metabolic controls for sulfate metabolism in Neurospora crassa: isolation and study of chromate-resistant and sulfate transport-negative mutants. J Bacteriol 102:716–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menziger W (1966) Zurvariabilität and Taxonomie von Arten and Formen der Gattung Botrytis Mich. Zentralblätt Bakteriologie Parasitenkunde Infektionskr Hyg 120:179–196

    Google Scholar 

  • Micali CO, Smith ML (2003) On the independence of barrage formation and heterokaryon incompatibility in Neurospora crassa. Fungal Genet Biol 38:209–219

    Article  CAS  PubMed  Google Scholar 

  • Pearson MN, Bailey AM (2013) Viruses of Botrytis. Adv Virus Res 86:249–272

    Article  PubMed  Google Scholar 

  • Pollastro S, Faretra F, Di Canio V, De Guido A (1996) Characterization and genetic analysis of field isolates of Botryotinia fuckeliana (Botrytis cinerea) resistant to dichlofluanid. Eur J Plant Pathol 102:607–613

    Article  Google Scholar 

  • Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Can J Bot 63:179–183

    Article  Google Scholar 

  • Raposo R, Gomez V, Urrutia T, Melgarejo P (2001) Survival of Botrytis cinerea in southern Spanish greenhouses. Eur J Plant Pathol 107:229–236

    Article  Google Scholar 

  • Read ND, Goryachev AB, Lichius A (2012) The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. Fungal Biol Rev 26:1–11

    Article  Google Scholar 

  • Rizet G (1952) Les phenomenes de barrage chez Podospora anserine: analyse genetique des barrages entre souchess et S. Rev Cytologiquede Biol Veg 13:51–92

    Google Scholar 

  • Roca MG, Read ND, Wheals AE (2005) Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 249:191–198

    Article  CAS  Google Scholar 

  • Roca MG, Weichert M, Siegmund U, Tudzinski P, Fleiβner A (2012) Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biol 116:379–387

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Garcia C, Medina V, Alonso A, Ayllon MA (2014) Mycoviruses of Botrytis cinerea isolates from different hosts. Ann Appl Biol 164:46–61

    Article  CAS  Google Scholar 

  • Smith ML, Gibbs CC, Milgroom MG (2006) Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) in Cryphonectria parasitica. Mycologia 98:43–50

    Article  CAS  PubMed  Google Scholar 

  • Summers RW, Heaney SP, Grindle M (1984) Studies of a dicarboximide resistant heterokaryon of Botrytis cinerea. Br Crop Protect Conf Pests Dis 2:453–458

    Google Scholar 

  • Tomsett AB, Garrrett RH (1980) The isolation and characterization of mutants defective in nitrate assimilation in Neurospora crassa. Genetics 95:649–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong LCH, Silar P, Lalucque H (2014) Genetic control of anastomosis in Podospora anserina. Fungal Genet Biol 70:94–103

    Article  PubMed  Google Scholar 

  • Tsukasaki W, Maruyama J, Katsuhiko K (2014) Establishment of a new method to quantitatively evaluate hyphal fusion ability in Aspergillus orysae. Biosci Biotechnol Biochem 78:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski P, Heller J, Siegmund U (2012) Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol 15:653–659

    Article  CAS  PubMed  Google Scholar 

  • Vialta A, Catani CF, Junior RB, Azevedo JL (1999) Isolation and characterization of selenate-resistant mutants of Acremonium chrysogenum. Bras Arch Biol Technol 42:369–374

    CAS  Google Scholar 

  • Vittal R, Yang HC, Hartman GL (2012) Anastomosis of germ tubes and migration of nuclei in germ tube networks of the soybean rust pathogen, Phakopsora pachyrhizi. Eur J Plant Pathol 132:163–167

    Article  Google Scholar 

  • Walker AS, Gautier A, Confais J et al (2011) Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101:1433–1445

    Article  PubMed  Google Scholar 

  • Weeds PL, Beever RE, Long PG (1998) New genetic markers for Botrytis cinerea (Botryotinia fuckeliana). Mycol Res 102:791–800

    Article  CAS  Google Scholar 

  • White GJ, Dobinson K, Traquair JA (1998) Selection of nitrate-nonutilizing mutants in Verticillium, Alternaria, and Botrytis. Can J Plant Pathol 20:340

    Google Scholar 

  • Yourman LF, Jeffers SN (1999) Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis 83:569–575

    Article  CAS  Google Scholar 

  • Yunis H, Elad Y (1989) Survival of dicarboximide-resistant strains of Botrytis cinerea in plant debris during summer in Israel. Phytoparasitica 17:13–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Korolev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Korolev, N., Elad, Y. (2016). Vegetative Incompatibility in Botrytis . In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_4

Download citation

Publish with us

Policies and ethics