Skip to main content

Ripening of Tomato Fruit and Susceptibility to Botrytis cinerea

  • Chapter
  • First Online:
Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

Botrytis cinerea causes gray mold decay in the ripe fruit of many plant species leading to significant economic losses for the producers, distributers and consumers of fresh and stored produce. This chapter summarizes current knowledge about the biology of a model fleshy fruit, tomato, during B. cinerea infections. The information presented emphasizes how ripening regulation and events in the host influence resistance when fruit are unripe and susceptibility when fruit are ripe. Fruit ripening regulators (e.g., transcription factors, epigenetic modifiers and hormones) and events unique to ripening that can impact the susceptibility of tomato fruit to B. cinerea are discussed. Understanding the processes in the fruit that underlie the shift from resistance to susceptibility during ripening and resolving how B. cinerea modifies its strategies of infection in response to the developmental changes of the host may guide efforts to improve the resistance of fruit to B. cinerea and other fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akihiro T, Koike S, Tani R et al (2008) Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol 49:1378–1389

    Article  CAS  PubMed  Google Scholar 

  • Almeida DPF, Huber DJ (1999) Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol Plant 105:506–512

    Article  CAS  Google Scholar 

  • Archbold DD, Hamilton-Kemp TR, Barth MM et al (1997) Identifying natural volatile compounds that control gray mold (Botrytis cinerea) during postharvest storage of strawberry, blackberry and grape. J Agric Food Chem 45:4032–4037

    Article  CAS  Google Scholar 

  • Arie T, Takahashi H, Kodama M et al (2007) Tomato as a model plant for plant-pathogen interactions. Plant Biotechnol 24:135–147

    Article  CAS  Google Scholar 

  • Asselbergh B, Curvers K, Franca SC et al (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baur AH, Yang SF, Pratt HK et al (1971) Ethylene biosynthesis in fruit tissues. Plant Physiol 47:696–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bellin D, Asai S, Delledonne M et al (2013) Nitric oxide as a mediator for defence responses. Mol Plant Microbe Interact 26:271–277

    Article  CAS  PubMed  Google Scholar 

  • Bellisle F (1999) Glutamate and the UMAMI taste: sensory, metabolic, nutritional and behavioural considerations. A review of the literature published in the last 10 years. Neurosci Biobehav Rev 23:423–438

    Article  CAS  PubMed  Google Scholar 

  • Bessire M, Chassot C, Jacquat AC et al (2007) A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26:2158–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Ulate B (2014) Developmentally Regulated Susceptibility of Tomato Fruit to Botrytis cinerea.PhD dissertation, University of California, Davis

    Google Scholar 

  • Blanco-Ulate B, Vincenti E, Powell AL et al (2013) Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front Plant Sci 4:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco-Ulate B, Morales-Cruz A, Amrine KCH et al (2014) Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Front Plant Sci 5:435

    Article  PubMed  PubMed Central  Google Scholar 

  • Boggio SB, Palatnik JF, Heldt HW et al (2000) Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum mill. Plant Sci 159:125–133

    Article  CAS  PubMed  Google Scholar 

  • Bolouri Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63:3989–3998

    Article  CAS  PubMed  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L et al (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    Article  CAS  PubMed  Google Scholar 

  • Böttcher C, Keyzers RA, Boss PK et al (2010) Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J Exp Bot 61:3615–3625

    Google Scholar 

  • Böttcher C, Burbidge CA, Boss PK et al (2013) Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biol 13:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brading PA, Hammond-Kosack KE, Parr A, Jones JD (2000) Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J 23:305–318

    Google Scholar 

  • Brady CJ (1987) Fruit ripening. Annu Rev Plant Physiol 38:155–178

    Article  CAS  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defence hormone. Annu Rev Plant Biol 60:183–205

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–339

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Cantu D, Vicente A, Greve L et al (2008) The intersection between cell wall disassembly, ripening and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci U S A 105:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantu D, Blanco-Ulate B, Yang L et al (2009) Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol 150:1434–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrari F, Baxter C, Usadel B et al (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centeno DC, Osorio S, Nunes-Nesi A et al (2011) Malate plays a crucial role in starch metabolism, ripening and soluble solid content of tomato fruit and affects postharvest softening. Plant Cell 23:162–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chague V, Elad Y, Barakat R et al (2002) Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiol Ecol 40:143–149

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N, Ghosh R, Ghosh S et al (2013) Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase. Plant Physiol 162:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassot C, Nawrath C, Métraux J-P (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–980

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Kong J, Qin C et al (2015) Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening. Sci Rep 5:9192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun J-P, Huber DJ (1998) Polygalacturonase-mediated solubilization and depolymerization of pectic polymers in tomato fruit cell walls: regulation by pH and ionic conditions. Plant Physiol 117:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung MY, Vrebalov J, Alba R, Lee J et al (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936–947

    Article  CAS  PubMed  Google Scholar 

  • Collado IG, Hernandez Galan R, Prieto V et al (1996) Biologically active sesquiterpenoid metabolites from the fungus Botrytis cinerea. Phytochemistry 41:513–517

    Article  CAS  Google Scholar 

  • Colmenares AJ, Duran-Patron RM, Hernandez-Galan R et al (2002) Four new lactones from Botrytis cinerea. J Nat Prod 65:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Cristescu SM, De Martinis D, Te Lintel Hekkert S et al (2002) Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl Environ Microbiol 68:5342–5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curvers K, Seifi H, Mouille G et al (2010) ABA-deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiol 154:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bruyne L, Hofte M, De Vleesschauwer (2014) Connecting growth and defense: the emergingroles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant 7:943–959

    Google Scholar 

  • Deighton N, Muckenschnabel I, Colmenares AJ et al (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692

    Article  CAS  PubMed  Google Scholar 

  • Derckel J-P, Audran J-C, Haye B et al (1998) Characterization, induction by wounding and salicylic acid and activity against Botrytis cinerea of chitinases and β-1,3-glucanases of ripening grape berries. Physiol Plant 104:56–64

    Article  CAS  Google Scholar 

  • Diaz J, ten Have A, Van Kan AL (2002) The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol 129:1341–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doehlemann G, Molitor F, Hahn M (2005) Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42:601–610

    Article  CAS  PubMed  Google Scholar 

  • Doidy J, Grace E, Kuhn C et al (2012) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17:413–422

    Article  CAS  PubMed  Google Scholar 

  • Dong T, Hu Z, Deng L et al (2013) A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol 163:1026–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran-Patron R, Hernandez-Galan R, Rebordinos LG et al (1999) Structure-activity relationships of new phytotoxic metabolites with the botryane skeleton from Botrytis cinerea. Tetrahedron 55:2389–2400

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • El Oirdi M, El Rahman TA, Rigano L et al (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eriksson EM, Bovy A, Manning K et al (2004) Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flors V, Leyva M, Vicedo B et al (2007) Absence of the endo-β-1,4-glucanses Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Plant J 52:1027–1040

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Bramley P, Seymour GB (2001) Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening. Phytochemistry 58:75–79

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50:5751–5780

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Wang S (2011) Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci 2:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujisawa M, Nakano T, Shima Y et al (2013) A large-scale identification of direct targets of the tomato MADS Box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25:371–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa M, Shima Y, Nakagawa H et al (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26:89–101

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Glazebrook J (2005) contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Glazener JA, Wouters CH (1981) Detection of rishitin in tomato fruits after infection with Botrytis cinerea. Physiol Plant Pathol 19:243–248

    Article  CAS  Google Scholar 

  • Halliday K (2004) Plant hormones: the interplay of brassinosteroids and auxin. Current Biol 14:R1008–R1010

    Google Scholar 

  • Harrison E, Burbidge A, Okyere JP et al (2011) Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regul 64:301–309

    Article  CAS  Google Scholar 

  • Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development and disease. Annu Rev Phytopathol 49:369–390

    Article  CAS  PubMed  Google Scholar 

  • Hyun T, Eom S, Rim Y et al (2011) Alteration of the expression and activation of tomato invertases during Botrytis cinerea infection. Plant Omics 4:413–417

    CAS  Google Scholar 

  • Isaacson T, Kosma DK, Matas AJ et al (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J 60:363–377

    Article  CAS  PubMed  Google Scholar 

  • Itaya A, Bundschuh R, Archual AJ et al (2008) Small RNAs in tomato fruit and leaf development. BBA Genet Regul Mech 1779:99–107

    CAS  Google Scholar 

  • Itkin M, Rogachev I, Alkan N et al (2011) GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23:4507–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itkin M, Heinig U, Tzfadia O et al (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341:175–179

    Article  CAS  PubMed  Google Scholar 

  • Jia H-F, Chai Y-M, Li C-L et al (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H-F, Wang Y, Sun M et al (2013) Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol 198:453–465

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Creissen G, Kular BP et al (2002) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Wu F, Xiao L et al (2012) Microarray-based analysis of tomato miRNA regulated by Botrytis cinerea. J Plant Growth Regul 31:38–46

    Article  CAS  Google Scholar 

  • Karlova R, Rosin F, Busscher-Lange J et al (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlova R, Van Haarst JC, Maliepaard C et al (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64:1863–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  CAS  PubMed  Google Scholar 

  • Kosma DK, Parsons EP, Isaacson T et al (2010) Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol Plant 139:107–117

    Article  CAS  PubMed  Google Scholar 

  • Koyama K, Sadamatsu K, Goto-Yamamoto N (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomic 10:367–381

    Article  CAS  Google Scholar 

  • Kumar R, Agarwal P, Tyagi A et al (2012) Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genomics 287:221–235

    Article  CAS  PubMed  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M et al (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lacan D, Baccou J-C (1998) High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits. Planta 204:377–382

    Article  CAS  Google Scholar 

  • Lara I, Belge B, Goulao LF (2014) The fruit cuticle as a modulator of postharvest quality. Postharvest Biol Technol 87:103–112

    Article  CAS  Google Scholar 

  • Laluk K, Luo H, Chai M et al (2011) Biochemical and genetic requirements for the function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–2849

    Google Scholar 

  • Lee IC, Hong SW, Whang SS et al (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Joung J-G, McQuinn R et al (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes A, Du Y, Koornneef A et al (2010) Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant Microbe Interact 23:187–197

    Article  CAS  PubMed  Google Scholar 

  • Leroch M, Kleber A, Silva E et al (2013) Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Eukaryot Cell 12:614–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshem YY (2000) Nitric oxide in plants. Occurrence, function and use. Kluwer Academic Publishers, Dordrecht, pp 1–154

    Book  Google Scholar 

  • Leshem YY, Wills RBH, Ku VV-V (1998) Evidence for the function of the free radical gas -nitric oxide (NO•)- as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Lin W, Lu D, Gao X et al (2013) Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proc Natl Acad Sci U S A 110:21114–12119

    Google Scholar 

  • Lin Z, Hong Y, Yin M et al (2008) A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J 55:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu Q, Xiong J et al (2007) Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage. Sci China C Life Sci 50:511–517

    Article  CAS  PubMed  Google Scholar 

  • Liu R, How-Kit A, Stammitti L et al (2015) A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci USA 112:10804-10809

    Google Scholar 

  • Lyon G, Goodman B, Williamson B (2007) Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Springer, Dordrecht, pp 119–141

    Chapter  Google Scholar 

  • Małolepszá U, Różalska S (2005) Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. Plant Physiol Biochem 43:623–635

    Article  PubMed  CAS  Google Scholar 

  • Manteau S, Abouna S, Lambert B, Legendre L (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43:359–366

    Google Scholar 

  • Manning K, Tor M, Poole M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Marcos JF, González-Candelas L, Zacarías L (2005) Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs. J Exp Bot 56:2183–2193

    Article  CAS  PubMed  Google Scholar 

  • Martel C, Vrebalov J, Giovannoni J (2011) The tomato (Solanum lycopersicum) MADS-box transcription factor RIN interacts with promoters involved in numerous ripening processes in a CNR dependent manner. Plant Physiol 157:1568–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Mintz-Oron S, Mandel T, Rogachev I et al (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147:823–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohorianu I, Schwach F, Jing R et al (2011) Profiling of short RNAs during fleshy fruit development reveals stage‐specific sRNAome expression patterns. Plant J 67:232–246

    Article  CAS  PubMed  Google Scholar 

  • Mondal K, Sharma NS, Malhotra SP et al (2004) Antioxidant systems in ripening tomato fruits. Biol Plant 48:49–53

    Article  CAS  Google Scholar 

  • Morgan MJ, Osorio S, Gehl B et al (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol 161:397–407

    Article  CAS  PubMed  Google Scholar 

  • Mounet F, Lemaire-Chamley M, Maucourt M et al (2007) Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA. Metabolomics 3:273–288

    Article  CAS  Google Scholar 

  • Moxon S, Jing R, Szittya G et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Kenton P, Atzorn R et al (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadakudti SS, Holdsworth WL, Klein CL et al (2014) KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato. Plant J 78:1022–1033

    Article  CAS  Google Scholar 

  • Narayanasamy P (2006) Integrated systems for the management of postharvest diseases. In: Postharvest pathogens and disease management. Wiley, Hoboken, pp 537–554

    Google Scholar 

  • Nambeesan S, Abuqamar S, Laluk K et al (2012) Polyamines attenuate ethylene-mediated defence responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CV, Vrebalov JT, Gapper NE et al (2014) Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. Plant Cell 26:585–601

    Google Scholar 

  • Nürnberger T, Scheel D (2001) Signal transmission in the plant immune response. Trends Plant Sci 6:372–379

    Article  PubMed  Google Scholar 

  • Ordaz-Ortiz JJ, Marcus SE, Knox JP (2009) Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol Plant 2:910–921

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Huisman M, Willats W et al (2002) Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440–447

    Article  CAS  PubMed  Google Scholar 

  • Osorio S, Alba R, Damasceno CM et al (2011) Systems biology of tomato fruit development: combined transcript, protein and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157:405–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio S, Alba R, Nikoloski Z et al (2012) Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol 159:1713–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio S, Scossa F, Fernie AR (2013) Molecular regulation of fruit ripening. Front Plant Sci 4:198

    PubMed  PubMed Central  Google Scholar 

  • Pan H, Bradley G, Pyke K et al (2013) Network inference analysis identifies and APRR2-Like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol 161:1476–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pech J-C, Purgatto E, Bouzayen M et al (2012) Ethylene and fruit ripening. In: McManus MT (ed) Annual plant reviews, vol 44: The plant hormone ethylene. Wiley-Blackwell, Oxford, pp 275–304

    Google Scholar 

  • Peña-Cortés H, Barrios P, Dorta F et al (2004) Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. Plant Growth Regul 23:246–260

    Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Google Scholar 

  • Powell ALT, Van Kan JAL, ten Have A et al (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13:942–950

    Article  CAS  PubMed  Google Scholar 

  • Powell AL, Nguyen CV, Hill T et al (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715

    Article  CAS  PubMed  Google Scholar 

  • Prusky D (1996) Pathogen quiescence in postharvest diseases. Annu Rev Phytopathol 34:413–434

    Article  CAS  PubMed  Google Scholar 

  • Prusky D, Alkan N, Mengiste T et al (2013) Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu Rev Phytopathol 51:155–176

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Meng X, Wang Q et al (2009) Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. J Proteome Res 8:2449–2462

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Wang Y, Cao B et al (2012) Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J 70:243–255

    Article  CAS  PubMed  Google Scholar 

  • Quidde T, Osbourn AE, Tudzynski P (1998) Detoxification of α-tomatine by Botrytis cinerea. Physiol Mol Plant Pathol 52:151–165

    Article  CAS  Google Scholar 

  • Rasul S, Dubreuil-Maurizi C, Lamotte O et al (2012) Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 35:1483–1499

    Article  CAS  PubMed  Google Scholar 

  • Rebordinos L, Cantoral JM, Prieto MV et al (1996) The phytotoxic activity of some metabolites of Botrytis cinerea. Phytochemistry 42:383–387

    Article  CAS  Google Scholar 

  • Redgwell RJ, MacRae E, Hallett I et al (1997) In vitro and in vivo swelling of cell walls during fruit ripening. Planta 203:162–172

    Article  CAS  Google Scholar 

  • Reis H, Pfiffi S, Hahn M (2005) Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol 6:257–267

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defence: more than just jasmonate-salycilate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, Balibrea M, Hofmann M et al (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    Article  CAS  PubMed  Google Scholar 

  • Rolin D, Baldet P, Just D et al (2000) NMR study of low subcellular pH during the development of cherry tomato fruit. Funct Plant Biol 27:61–69

    Article  CAS  Google Scholar 

  • Rowe HC, Walley JW, Corwin J et al (2010) Deficiencies in jasmonate-mediated plant defence reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog 6:e1000861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruan Y, Patrick JW, Bouzayen M, Osorio S, Fernie A (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–666

    Google Scholar 

  • Ruan Y-L, Patrick J, Brady C (1996) The composition of apoplast fluid recovered from intact developing tomato fruit. Aust J Plant Phys 23:9–13

    Google Scholar 

  • Rui O, Hahn M (2007) The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism and for pathogenicity on fruits. Microbiology 153:2791–2802

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Sagar M, Chervin C, Mila I et al (2013) SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol 161:1362–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saladie M, Matas AJ, Isaacson T et al (2007) A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Vallet A, López G, Ramos B et al (2012) Disruption of abscisic acid signalling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol 160:2109–2124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savatin DV, Ferrari S, Sicilia F et al (2011) Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis. Plant Physiol 157:1163–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defence responses in tomato plants. Plant Cell 11:263–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J et al (2002) Functional analysis of an extracellular catalase of Botrytis cinerea. Mol Plant Pathol 3:227–238

    Article  CAS  PubMed  Google Scholar 

  • Seifi HS, Curvers K, De Vleesschauwer D et al (2013a) Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol 199:490–504

    Article  CAS  PubMed  Google Scholar 

  • Seifi HS, Van Bockhaven J, Angenon G et al (2013b) Glutamate metabolism in plant disease and defence: friend or foe? Mol Plant Microbe Interact 26:475–485

    Article  CAS  PubMed  Google Scholar 

  • Seifi HS, De Vleesschauwer D, Aziz A et al (2014) Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Plant Signal Behav 9:e27995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour GB, Poole M, Manning K et al (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11:58–63

    Article  CAS  PubMed  Google Scholar 

  • Seymour GB, Østergaard L, Chapman NH et al (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  PubMed  Google Scholar 

  • Shackel KA, Greve C, Labavitch JM et al (1991) Cell turgor changes associated with ripening in tomato pericarp tissue. Plant Physiol 97:814–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah P, Powell AL, Orlando R, Bergmann C, Gutierrez-Sanchez G (2012) Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. J Proteome Res 11:2178–2192

    Google Scholar 

  • Sharon A, Elad Y, Barakat R et al (2007) Phytohormones in Botrytis-plant interactions. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, Cathology and Control. Springer, Dordrecht, pp 163–179

    Chapter  Google Scholar 

  • Shi JX, Adato A, Alkan N et al (2013) The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol 197:468–480

    Article  CAS  PubMed  Google Scholar 

  • Shima Y, Kitagawa M, Fujisawa M et al (2013) Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Mol Biol 82:427–438

    Article  CAS  PubMed  Google Scholar 

  • Singh Z, Khan AS, Zhu S et al (2013) Nitric oxide in the regulation of fruit ripening: challenges and thrusts. Stewart Postharvest Rev 9:1–11

    Google Scholar 

  • Sorrequieta A, Ferraro G, Boggio SB et al (2010) Free amino acid production during tomato fruit ripening: a focus on L-glutamate. Amino Acids 38:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Soto A, Ruiz KB, Ravaglia D et al (2013) ABA may promote or delay peach fruit ripening through modulation of ripening- and hormone-related gene expression depending on the developmental stage. Plant Physiol Biochem 64:11–24

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    Article  CAS  PubMed  Google Scholar 

  • Swartzberg D, Kirshner B, Rav-David D et al (2008) Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. Eur J Plant Pathol 120:289–297

    Article  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y et al (2012) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  CAS  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Van Baarlen P, Legendre L, Kan JL (2007) Plant defence compounds against Botrytis infection. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, Pathology and Control. Springer, Dordrecht, pp 143–161

    Chapter  Google Scholar 

  • Van der Ent S, Pieterse CMJ (2012) Ethylene: multi-tasker in plant–attacker interactions. Annu Plant Rev 44:343–377

    Google Scholar 

  • Van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  CAS  Google Scholar 

  • Van Kan JAL, Van’t Klooster JW, Wagemakers CAM et al (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant Microbe Interact 10:30–38

    Article  PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defence-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Vardhini VB, Rao SSR (2002) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61:843–847

    Article  Google Scholar 

  • Vaughn SF, Gardner HW (1993) Lipoxygenase-derived aldehydes inhibit fungi pathogenic on soybean. J Chem Ecol 19:2337–2345

    Article  CAS  PubMed  Google Scholar 

  • Vaughn SF, Spencer GF, Shasha BS (1993) Volatile compounds from raspberry and strawberry fruit inhibit postharvest decay fungi. J Food Sci 58:793–796

    Article  CAS  Google Scholar 

  • Verhoeff K, Liem JI (1975) Toxicity of tomatine to Botrytis cinerea, in relation to latency. J Phytopathol 82:333–338

    Article  CAS  Google Scholar 

  • Vicente AR, Saladié M, Rose JKC et al (2007) The linkage between cell wall metabolism and fruit softening: looking to the future. J Sci Food Agric 87:1435–1448

    Article  CAS  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • von Roepenack-Lahaye E, Newman M-A, Schornack S et al (2003) p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defence against pathogens. J Biol Chem 278:43373–43383

    Article  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V et al (2002) A MADS-Box gene necessary for fruit ripening at the tomato ripening-inhibitor (RIN) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin F-M et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Yu K, Navarre D et al (2010) The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol 154:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L-P, Fang Y-Y, An C-P et al (2013) C2-mediated decrease in DNA methylation, accumulation of siRNAs and increase in expression for genes involved in defence pathways in plants infected with beet severe curly top virus. Plant J 73:910–917

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y et al (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Huang W, Chatterjee S et al (2014) Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J 77:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokotani N, Nakano R, Imanishi S et al (2009) Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J Exp Bot 60:3433–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharah S, Singh Z, Symons G et al (2012) Role of brassinosteroids, ethylene, abscisic acid and indole-3-acetic acid in mango fruit ripening. J Plant Growth Regul 31:363–372

    Article  CAS  Google Scholar 

  • Zanor MI, Osorio S, Nunes-Nesi A et al (2009) RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150:1204–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Van Kan JAL (2013) Botrytis cinerea mutants deficient in d‐galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato. Mol Plant Pathol 14:19–29

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009) Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene and the role of aba on fruit ripening. Plant Signal Behav 4:460–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Thiewes H, Van Kan JAL (2011) The d-galacturonic acid catabolic pathway in Botrytis cinerea. Fungal Genet Biol 48:990–997

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Butelli E, De Stefano R et al (2013) Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 23:1094–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hua C, Stassen JH et al (2014) Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters. Fungal Genet Biol 72:182–191. http://dx.doi.org/10.1016/j.fgb.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Hong H, Chen L et al (2014) LeMAPK1, LeMAPK2 and LeMAPK3 are associated with nitric oxide-induced defence response against Botrytis cinerea in the Lycopersicon esculentum fruit. J Agric Food Chem 62:1390–1396

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Fei Z, Chen Y-R et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhou S et al (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Zhu B, Fu D et al (2012) Sculpting the maturation, softening and ethylene pathway: the influences of microRNAs on tomato fruits. BMC Genomics 13:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Fu D, Zhu Y et al (2013) SRNAome parsing yields insights into tomato fruit ripening control. Physiol Plant. 149:540–553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann L. T. Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blanco-Ulate, B., Vincenti, E., Cantu, D., Powell, A.L.T. (2016). Ripening of Tomato Fruit and Susceptibility to Botrytis cinerea . In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_19

Download citation

Publish with us

Policies and ethics