Skip to main content

Hitting the Wall: Plant Cell Walls During Botrytis cinerea Infections

  • Chapter
  • First Online:
Book cover Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

The cell wall is among the first structures that Botrytis cinerea encounters when colonizing plant tissues. From the perspective of B. cinerea as an infecting pathogen, host cell walls are potential sources of nutrients, but intact walls are also barriers that limit advancement of growing fungal hyphae beyond the initial sites of penetration. Plant cell walls are polysaccharide-rich extracellular matrices that surround individual cells. The architecture and composition of cell walls vary among plant species and organs. The shapes and attributes of organs are determined by the arrangements of the macromolecules that compose cell walls. Walls are synthesized, remodeled and disassembled as cells divide, differentiate, expand, and expire. Metabolic, developmental and external events, including infections by pathogens, alter the properties and components of plant cell walls. This chapter focuses on the cell walls of host plant tissues during infections by B. cinerea. The expression and the polysaccharide targets of B. cinerea and plant genes predicted to encode proteins that could modify plant cell walls as a consequence of infection are described. The impacts of these proteins on the properties of walls are discussed, noting potential alterations to extracellular anti-pathogen and pathogen-related defence proteins associated with the wall matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbuQamar S, Chen X, Dhawan R et al (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to B. cinerea infection. Plant J 48:28–44

    Article  CAS  PubMed  Google Scholar 

  • AbuQamar S, Ajeb S, Sham A et al (2013) A mutation in the expansin-likeA2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol Plant Pathol 14:813–827

    Article  CAS  PubMed  Google Scholar 

  • Albersheim P, Darvill A, Roberts K et al (2010) Biochemistry of cell wall molecules. In: Plant cell walls: from chemistry to biology. Garland Science, Taylor and Francis Group, LLC, New York.

    Google Scholar 

  • Amselem J, Cuomo CA, Van Kan JA et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and B. cinerea cinerea. PLoS Genet 7:e1002230. doi:10.1371/journal.pgen.1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An HJ, Lurie S, Greve LC, Rosenquist D et al (2005) Determination of pathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products of plant cell walls. Anal Biochem 338:71–82

    Article  CAS  PubMed  Google Scholar 

  • Asselbergh B, Curvers K, Franca SC et al (2007) Resistance to B. cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellincampi D, Dipierro N, Salvi G et al (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AB, Labavitch JM (2008) Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. Plant Sci 175:130–136

    Article  CAS  Google Scholar 

  • Blanco-Ulate B, Morales-Cruz A, Amrine KC et al (2014) Genome-wide transcriptional profiling of B. cinerea genes targeting plant cell walls during infections of different hosts. Front Plant Sci 5:435. doi:10.3389/fpls.2014.00435

    Article  PubMed  PubMed Central  Google Scholar 

  • Brito N, Espino J, González C (2006) The endo-β-1,4-xylanase Xyn11A is required for virulence in B. cinerea. Mol Plant Microbe Interact 19:25–32

    Article  CAS  PubMed  Google Scholar 

  • Brutus A, Sicilia F, Macone A et al (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6:724–732

    Article  CAS  PubMed  Google Scholar 

  • Campbell AD, Labavitch JM (1991) Induction and regulation of ethylene biosynthesis by pectic oligomers in cultured pear cells. Plant Physiol 97:699–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  CAS  Google Scholar 

  • Cantu D, Vicente AR, Labavitch JM et al (2008a) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13:610–617

    Article  CAS  PubMed  Google Scholar 

  • Cantu D, Vicente A, Greve L et al (2008b) The intersection between cell wall disassembly, ripening and fruit susceptibility to B. cinerea. Proc Natl Acad Sci U S A 105:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantu D, Blanco-Ulate B, Yang L et al (2009) Ripening-regulated susceptibility of tomato fruit to B. cinerea requires NOR but not RIN or ethylene. Plant Physiol 150:1434–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Tang X, Giovannoni J et al (2012) Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening. BMC Plant Biol 12:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Casasoli M, Federici L, Spinelli F et al (2009) Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein. Proc Natl Acad Sci U S A 106:7666–7671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Biol 49:281–309

    Article  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M et al (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper W, Bouzayen M, Hamilton A et al (1998) Use of transgenic plants to study the role of ethylene and polygalacturonase during infection of tomato fruit by Colletotrichum gloeosporioides. Plant Pathol 47:308–316

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204. doi:10.3389/fpls.2012.00204

    Article  PubMed  PubMed Central  Google Scholar 

  • Curvers K, Seifi H, Mouille G et al (2010) ABA-deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to B. cinerea cinerea. Plant Physiol 154:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis KR, Darvill AG, Albersheim P et al (1986) Host-pathogen interactions XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol 80:568–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Leeuw G (1985) Deposition of lignin, suberin and callose in relation to the restriction of infection by B. cinerea in ghost spots of tomato fruits. J Phytopathol 112:143–152

    Article  Google Scholar 

  • De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defence against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    Article  PubMed  Google Scholar 

  • De Lorenzo G, Cervone F, Bellincampi D et al (1994) Polygalacturonase, PGIP and oligogalacturonides in cell-cell communication. Biochem Soc Trans 22:394–397

    Article  PubMed  Google Scholar 

  • De Lorenzo G, Brutus A, Savatin DV et al (2011) Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Lett 585:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    Article  CAS  PubMed  Google Scholar 

  • Diaz J, ten Have A, Van Kan AL (2002) The role of ethylene and wound signaling in resistance of tomato to B. cinerea. Plant Physiol 129:1341–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eklöf JM, Brumer H (2010) The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol 153:456–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14(7):1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espino J, Brito N, Noda J et al (2005) B. cinerea endo-ß-1, 4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol 66:213–221

    Article  CAS  Google Scholar 

  • Espino J, Gutiérrez-Sánchez G, Brito N et al (2010) The B. cinerea early secretome. Proteomics 10:3020–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure D (2002) The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Appl Environ Microbiol 68:1485–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Acero FJ, Colby T, Harzen A et al (2010) 2-DE proteomic approach to the B. cinerea cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10:2270–2280

    Article  PubMed  CAS  Google Scholar 

  • Finiti I, Leyva M, López-Cruz J et al (2013) Functional analysis of endo-1, 4-β-glucanases in response to B. cinerea and Pseudomonas syringae reveals their involvement in plant–pathogen interactions. Plant Biol 15:819–831

    Article  CAS  PubMed  Google Scholar 

  • Flors V, Leyva M, Vicedo B et al (2007) Absence of the endo-β-1, 4-glucanses Cel1 and Cel2 reduces susceptibility to B. cinerea in tomato. Plant J 52:1027–1040

    Article  CAS  PubMed  Google Scholar 

  • Frías M, González C, Brito N (2011) Spl1, a cerato-platanin family protein, contributes to B. cinerea cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192:483–495

    Article  PubMed  CAS  Google Scholar 

  • Frías M, Brito N, González C (2013) The B. cinerea cerato-platanin Spl1 is a potent inducer of systemic acquired resistance (SAR) in tobacco and generates a wave of salicylic acid expanding from the site of application. Mol Plant Pathol 14:191–196

    Article  PubMed  CAS  Google Scholar 

  • Galletti R, Denoux C, Gambetta S et al (2008) The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defence responses effective against B. cinerea. Plant Physiol 148:1695–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide-or flagellin-induced resistance against B. cinerea. Plant Physiol 157:804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MG, Darvill AG, Albersheim P (1981) Host-pathogen interactions XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68:1161–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris PJ, Stone BA (2009) Chemistry and molecular organization of plant cell walls. In: Biomass recalcitrance. Blackwell Publishing Ltd,, Oxford, pp 61–93

    Google Scholar 

  • Hayashi T, Kaida R (2011) Functions of xyloglucan in plant cells. Mol Plant 4:17–24

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TF, Huang JW, Hsiang T (2001) Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. Eur J Plant Pathol 107:571–581

    Article  Google Scholar 

  • Ishii T, Matsunaga T, Hayashi N (2001) Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol 126:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamet E, Canut H, Boudart G et al (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MC, Forsyth W, Duncan HJ (1988) A survey of the pectic content of nonlignified monocot cell walls. Plant Physiol 88:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    Article  CAS  Google Scholar 

  • Joubert DA, Kars I, Wagemakers L et al (2007) A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase PG2 from B. cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol Plant Microbe Interact 20:392–402

    Article  CAS  PubMed  Google Scholar 

  • Kapat A, Zimand G, Elad Y (1998) Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by B. cinerea. Physiol Mol Plant Pathol 52:127–137

    Article  CAS  Google Scholar 

  • Kars I, Krooshof GH, Wagemakers L et al (2005a) Necrotizing activity of five B. cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    Article  CAS  PubMed  Google Scholar 

  • Kars I, McCalman M, Wagemakers L et al (2005b) Functional analysis of B. cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: pme1 and pme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol 6:641–652

    Article  CAS  PubMed  Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD et al (1973) The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klis FM, Brul S, De Groot PWJ (2010) Covalently linked wall proteins in ascomycetous fungi. Yeast 27:489–493

    Article  CAS  PubMed  Google Scholar 

  • Kohorn BD, Kohorn SL (2012) The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88. doi:10.3389/fpls.2012.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Z, Mengiste T (2013) Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens. Curr Opin Plant Biol 16:505–512

    Article  CAS  PubMed  Google Scholar 

  • Laluk K, Luo H, Chai M et al (2011) Biochemical and genetic requirements for function of the immune response regulator B. CINEREA-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Wang W, Zong Y, Qin G et al (2012) Exploring pathogenic mechanisms of B. cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 11:4249–4260

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Camardella L et al (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by B. cinerea. Plant Physiol 143:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetti V, Cervone F, Bellincampi D (2012) Methyl esterification of pectin plays a role during plant–pathogen interactions and affects plant resistance to diseases. J Plant Physiol 169:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Cervone F et al (2014) Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and Arabidopsis. Mol Plant Pathol 15:265–274

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AJ, Allwood WJ, Winder CL et al (2011) Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against B. cinerea. Plant J 67:852–868

    Article  CAS  PubMed  Google Scholar 

  • Manabe Y, Nafisi M, Verhertbruggen Y et al (2011) Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to B. cinerea cinerea. Plant Physiol 155:1068–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martellini F, Faoro F, Carresi L et al (2013) Cerato-populin and cerato-platanin, two non-catalytic proteins from phytopathogenic fungi, interact with hydrophobic inanimate surfaces and leaves. Mol Biotechnol 55:27–42

    Article  CAS  PubMed  Google Scholar 

  • Mathieu Y, Armen K, Xia H et al (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1:333–343

    Google Scholar 

  • McLusky SR, Bennett MH, Beale MH et al (1999) Cell wall alterations and localized accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by B. allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    Article  CAS  Google Scholar 

  • McNeil M, Darvill AG, Fry SC et al (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meindl T, Boller T, Felix G (2000) The bacterial elicitor flagellin activates its receptor in tomato cells according to the address–message concept. Plant Cell 12:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6(9):414–419

    Article  CAS  PubMed  Google Scholar 

  • Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem 44:435–449

    Article  CAS  PubMed  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Mølgaard A, Kauppinen S, Larsen S (2000) Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8:373–383

    Article  PubMed  Google Scholar 

  • Mutter M, Renard CM, Beldman G et al (1998) Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 311:155–164

    Article  CAS  PubMed  Google Scholar 

  • Nafisi M, Stranne M, Zhang L et al (2014) The endo-arabinanase Ara1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen B. cinerea. Mol Plant Microbe Interact. doi:10.1094/MPMI-02-14-0036-R

    PubMed  Google Scholar 

  • Nguema-Ona E, Vicré-Gibouin M, Cannesan MA et al (2013a) Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci 18:440–449

    Article  CAS  PubMed  Google Scholar 

  • Nguema-Ona E, Moore JP, Fagerström AD et al (2013b) Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection. BMC Plant Biol 13:1–15

    Article  CAS  Google Scholar 

  • Noda J, Brito N, Gonzalez C (2010) The B. cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38. doi:10.1186/1471-2229-10-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Google Scholar 

  • Osorio S, Castillejo C, Quesada MA et al (2008) Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca). Plant J 9:43–55

    Google Scholar 

  • Osorio S, Alba R, Damasceno CM et al (2011) Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157:405–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauly M, Gille S, Liu L et al (2013) Hemicellulose biosynthesis. Planta 238:627–642

    Article  CAS  PubMed  Google Scholar 

  • Powell ALT, Van Kan J, ten Have A et al (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant-Microbe Interact 13:942–950

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Bergmann CW, Rose JK et al (2003) Characterization of a tomato protein that inhibits a xyloglucan-specific endoglucanase. Plant J 34:327–338

    Article  CAS  PubMed  Google Scholar 

  • Raiola A, Lionetti V, Elmaghraby I et al (2011) Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol Plant Microbe Interact 24:432–440

    Article  CAS  PubMed  Google Scholar 

  • Ramirez V, García-Andrade J, Vera P (2011a) Enhanced disease resistance to B. cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes. Plant Signal Behav 6:91191–91193

    Article  CAS  Google Scholar 

  • Ramirez V, Agorio A, Coego A et al (2011b) MYB46 modulates disease susceptibility to B. cinerea in Arabidopsis. Plant Physiol 155:1920–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reignault P, Mercier M, Bompeix G, Boccara M (1994) Pectin methylesterase from Botrytis cinerea: physiological, biochemical and immunochemical studies. Microbiology 140(12):3249–3255

    Article  CAS  Google Scholar 

  • Reignault P, Kunz C, Delage N et al (2000) Host-and symptom-specific pectinase isozymes produced by B. cinerea. Mycol Res 104:421–428

    Article  CAS  Google Scholar 

  • Reymond P, Grünberger S, Paul et al (1995) Oligogalacturonide defence signals in plants: large fragments interact with the plasma membrane in vitro. Proc Natl Acad Sci U S A 92:4145–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183

    Article  PubMed  Google Scholar 

  • Rose JKC, Lee SJ (2010) Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol 153:433–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JK, Braam J, Fry SC et al (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  CAS  PubMed  Google Scholar 

  • Scheer JM, Ryan CA (1999) A 160-kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell 11:1525–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Selig MJ, Adney WS, Himmel ME et al (2009) The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16:711–722

    Article  CAS  Google Scholar 

  • Shah P, Gutierrez-Sanchez G, Orlando R et al (2009a) A proteomic study of pectin-degrading enzymes secreted by B. cinerea grown in liquid culture. Proteomics 9:3126–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah P, Atwood JA, Orlando R et al (2009b) Comparative proteomic analysis of B. cinerea secretome. J Proteome Res 8:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Powell AL, Orlando R et al (2012) Proteomic analysis of ripening tomato fruit infected by B. cinerea. J Proteome Res 11:2178–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrock KR, Labavitch JM (1994) Polygalacturonase inhibitors of Bartlett pear fruits: differential effects on B. cinerea polygalacturonase isozymes, and influence on products of fungal hydrolysis of pear cell walls and on ethylene induction in cell culture. Physiol Mol Plant Pathol 45:305–319

    Article  CAS  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadoni S, Zabotina O, Di Matteo A et al (2006) Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol 141:557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stotz HU, Bishop JG, Bergmann C et al (2000) Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol Mol Plant Pathol 56:117–130

    Article  CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J et al (1998) The endopolygalacturonase gene pg1 is required for full virulence of B. cinerea. Mol Plant Microbe Interact 11:1009–1016

    Article  PubMed  Google Scholar 

  • ten Have A, Breuil WO, Wubben JP et al (2001) Botrytiscinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol 33:97–105

    Article  PubMed  CAS  Google Scholar 

  • Thain J, Gubb I, Wildon D (1995) Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell Environ 18:211–214

    Article  CAS  Google Scholar 

  • Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85. doi:10.3389/fpls.2012.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valette-Collet O, Cimerman A, Reignault P et al (2003) Disruption of B. cinerea pectin methylesterase gene pme1 reduces virulence on several host plants. Mol Plant-Microbe Interact 16:360–267

    Article  CAS  PubMed  Google Scholar 

  • Van Baarlen P, Legendre L, Van Kan JL (2007) Plant defence compounds against B. cinerea infection. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Springer, Dordrecht, pp 143–161

    Chapter  Google Scholar 

  • Van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  CAS  Google Scholar 

  • Verhoeff K, Lihm J, Scheffer R et al (1983) Cellulolytic activity of B. cinerea in vitro and in vivo. J Phytopathol 106:97–103

    Article  CAS  Google Scholar 

  • Vidal S, Doco T, Williams P et al (2000) Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain. Carbohydr Res 326:277–294

    Article  CAS  PubMed  Google Scholar 

  • Voragen AJ, Coenen G-J, Verhoef R et al (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang H-D, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342(6154):118–123

    Google Scholar 

  • Windram O, Madhou P, McHattie S et al (2012) Arabidopsis defence against B. cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24:3530–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wubben JP, Ten Have A, Van Kan J et al (2000) Regulation of endopolygalacturonase gene expression in B. cinerea by galacutonic acid, ambient pH and carbon catabolite, repression. Curr Genet 37:152–157

    Article  CAS  PubMed  Google Scholar 

  • York WS, Qin Q, Rose JK (2004) Proteinaceous inhibitors of endo-β-glucanases. BBA Protein Proteomics 1696:223–233

    Article  CAS  Google Scholar 

  • Zhang L, Van Kan JAL (2013) B. cinerea mutants deficient in d-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato. Mol Plant Pathol 14:19–29

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hua C, Stassen JH, Chatterjee S, Cornelissen M, van Kan JAL (2013) Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: Identification and functional analysis of putative d-galacturonate transporters. Fungal Genet Biol. doi:10.1016/j.fgb.2013.10.002

    PubMed Central  Google Scholar 

  • Zhang L, Kars I, Essenstam B et al (2014) Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO B. CINEREA POLYGALACTURONASES1. Plant Physiol 164:352–364

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Cantu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blanco-Ulate, B., Labavitch, J.M., Vincenti, E., Powell, A.L.T., Cantu, D. (2016). Hitting the Wall: Plant Cell Walls During Botrytis cinerea Infections. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_18

Download citation

Publish with us

Policies and ethics