Skip to main content

Overview of Plant Defence Systems: Lessons from Arabidopsis-Botrytis cinerea Systems Biology

  • Chapter
  • First Online:
Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

Botrytis cinerea is an important model system for studying the necrotrophic plant pathogen lifestyle, whilst also representing one of the most economically destructive agricultural pathogens. A key challenge to understanding the pathology of this virulent fungus involves unraveling host responses. These host responses involve complex regulatory mechanisms and multiple downstream defence processes. In addition, the pathogen is capable of manipulating cellular processes in the host to favour infection. In this chapter we will present recent advances in systems biology approaches, combining high-throughput ‘omics technologies and computational/mathematical network inference techniques, which have been used to tease apart this complex host-pathogen interaction. We will also highlight novel systems approaches from other areas of plant pathology and plant science that can be applied to provide a more comprehensive understanding of plant defence against B. cinerea. We will conclude with the key challenges of understanding how both plant defence and pathogen attack are integrated, and translating knowledge from Arabidopsis to crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbuQamar S, Chen X, Dhawan R et al (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48:28–44

    Article  CAS  PubMed  Google Scholar 

  • Albert R, Jeong H, Barabasi A (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Interactome Mapping Consortium, Dreze M, Carvunis AR et al (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–607

    Article  PubMed Central  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter L, Jironkin A, Hickman R et al (2012) Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants. Plant Cell 24:3949–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  CAS  PubMed  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J et al (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159:266–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Brutus A, Sicilia F, Macone A et al (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Jiang H, Li C-B et al (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767

    Article  CAS  PubMed  Google Scholar 

  • Carrera J, Rodrigo G, Jaramillo A, Elena SF (2009) Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biol 10:R96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant-Microbe Interact 23:558–565

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Denby KJ, Kumar P, Kliebenstein DJ (2004) Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J 38:473–486

    Article  CAS  PubMed  Google Scholar 

  • Espino JJ, Gutiérrez-Sánchez G, Brito N et al (2010) The Botrytis cinerea early secretome. Proteomics 10:3020–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner C, Petutschnig E, Benitez-Alfonso Y et al (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci U S A 110:9166–9170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Galletti R, Denoux C et al (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field B, Osbourn AE (2008) Metabolic diversification – independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    Article  CAS  PubMed  Google Scholar 

  • Fiil BK, Amselem J, Cuomo CA et al (2011) Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. Plant Signal Behav 6:1425–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in asal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol 157:804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler-Lee J, O’Toole N, Ammar R et al (2007) A predicted interactome for Arabidopsis. Plant Physiol 145:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershenfeld N (1999) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Levine A (2002) Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol Biol 48:267–276

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Rachmilevitch S, Tiwari BS et al (2006) An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96:299–307

    Article  CAS  PubMed  Google Scholar 

  • Grefen C, Harter K (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219:733–742

    Article  CAS  PubMed  Google Scholar 

  • Hickman R, Hill C, Penfold CA et al (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J 75:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Zhang H, Kong L et al (2013) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Google Scholar 

  • Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Vinod K, Zheng Z et al (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JS, Ellis BE (2007) Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J Biol Chem 282:25020–25029

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Ambaru B, Thakkar P et al (2010) Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 28:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Seo Y-S, Coltrane D et al (2011) Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc Natl Acad Sci U S A 108:18548–18553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroch M, Kleber A, Kleber A et al (2013) Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Eukaryot Cell 12:614–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    Article  CAS  PubMed  Google Scholar 

  • Li Z-G, He F, Zhang Z, Peng Y-L (2011) Prediction of protein–protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids 42:2363–2371

    Article  PubMed  CAS  Google Scholar 

  • Liebrand TWH, Van den Burg HA, Joosten MHAJ (2014) Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci 19:123–132

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Vilela B, Irar S et al (2010) MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J 63:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Lyons R, Manners JM, Kazan K (2013) Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep 32:815–827

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Shah S, Bohnert HJ et al (2013) Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. PLoS Genet 9:e1003840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Markowetz F, Kostka D, Troyanskaya OG, Spang R (2007) Nested effects models for high-dimensional phenotyping screens. Bioinformatics 23:i305–i312

    Article  CAS  PubMed  Google Scholar 

  • Maruyama Y, Yamoto N, Suzuki Y et al (2013) The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci 213:79–87

    Article  CAS  PubMed  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E et al (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34:D108–D110

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya A, Albert P, Shinya T et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat CS, Ingle RA, Wathugala DL et al (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS One 7:e35995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhtar MS, Carvunis AR, Dreze M et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulema JMK, Denby KJ (2011) Spatial and temporal transcriptomic analysis of the Arabidopsis thaliana-Botrytis cinerea interaction. Mol Biol Rep 39:4039–4049

    Article  PubMed  CAS  Google Scholar 

  • Naseem M, Philippi N, Hussain A et al (2012) Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24:1793–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda J, Brito N, Gonzalez C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penfold CA, Wild DL (2011) How to infer gene networks from expression profiles, revisited. Interface Focus 1:857–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Penfold CA, Buchanan-Wollaston V, Denby KJ, Wild DL (2012) Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics 28:i233–i241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen K, Qiu J-L, Lütje J et al (2010) Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS One 5:e14364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham J, Liu J, Bennett MH et al (2012) Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytol 194:168–180

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Poinssot B, Vandelle E, Bentéjac M et al (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant-Microbe Interact 16:553–564

    Article  CAS  PubMed  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S et al (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pré M, Atallah M, Champion A et al (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu J-L, Fiil BK, Petersen K et al (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez V, García-Andrade J, Vera P (2011) Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes. Plant Signal Behav 6:911–913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasmussen MW, Roux M, Petersen M, Mundy J (2012) MAP kinase cascades in Arabidopsis innate immunity. Front Plant Sci. doi:10.3389/fpls.2012.00169

    PubMed  PubMed Central  Google Scholar 

  • Ren D, Liu Y, Yang K-Y et al (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 105:5638–5643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe HC, Walley JW, Corwin J et al (2010) Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog 6:e1000861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato M, Tsuda K, Wang L et al (2010) Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling. PLoS Pathog 6:e1001011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweighofer A, Kazanaviciute V, Scheikl E et al (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo Y-S, Chern M, Bartley LE et al (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7:e1002020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P (2006) Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol 72:4619–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son GH, Wan J, Kim HJ et al (2012) Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant-Microbe Interact 25:48–60

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Xie Z, Chen W et al (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Eggermont K, Penninckx IA et al (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651

    Article  CAS  PubMed  Google Scholar 

  • Van Baarlen P, Woltering EJ, Staats M, Van Kan JAL (2007) Histochemical and genetic analysis of host and non‐host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol Plant Pathol 8:41–54

    Article  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A et al (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Kan J (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Zhang X-C, Neece D et al (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Basnayake BMVS, Zhang H et al (2009a) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant-Microbe Interact 22:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Mao H, Dong C et al (2009b) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant-Microbe Interact 22:235–244

    Article  CAS  PubMed  Google Scholar 

  • Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windram O, Madhou P, McHattie S et al (2012) Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24:3530–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windram O, Penfold CA, Denby KJ (2014) Network modeling to understand plant immunity. Annu Rev Phytopathol 52:93–111

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Osman K, Iqbal M et al (2012) Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana. Front Plant Sci 3:297

    PubMed  Google Scholar 

  • Zander M, La Camera S, Lamotte O et al (2009) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61:200–210

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Li W, Xiang T et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xie Q, Anderson RG et al (2013a) Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 9:e1003370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhang W, Fraiture M et al (2013b) Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25:4227–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Kars I, Essenstam B et al (2014) Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164:352–364

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wei T, Yin K-Q et al (2012) Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195:450–460

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z-L, Zhao Y (2013) Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to “Candidatus Liberibacter asiaticus” infection. BMC Genomics 14:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Gu H, Jiao Y et al (2011a) Computational identification of protein-protein interactions in rice based on the predicted rice interactome network. Genomics Proteomics Bioinforma 9:128–137

    Article  CAS  Google Scholar 

  • Zhu Z, An F, Feng Y et al (2011b) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Métraux JP, Mauch-Mani B (2001) beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Denby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Windram, O., Stoker, C., Denby, K. (2016). Overview of Plant Defence Systems: Lessons from Arabidopsis-Botrytis cinerea Systems Biology. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_17

Download citation

Publish with us

Policies and ethics