Skip to main content

Contribution of Proteomics Research to Understanding Botrytis Biology and Pathogenicity

  • Chapter
  • First Online:
Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

Recent work has clearly shown the capacity of proteomics-based methodologies to establish the roles played by specific proteins in different biological processes. Beyond the study of genes, it has been established that proteins are the relevant set to be analyzed in research aiming to solve specific biological questions. Proteomics approaches can be categorized according to three different methodologies; gel-based, mainly two-dimension gel electrophoresis (2-DE); gel free, based on liquid chromatography-mass spectrometry (LC-MS); and quantitative proteomics, by isobaric markers. Most of these methodologies have been applied to studies of the proteome of Botrytis cinerea. Since the publication of the first proteomics report on Botrytis, technological advances have accelerated the identification of global protein content. Clearly, the publication of the B. cinerea genome has been of tremendous value to the proteomics research community; this has supported the accurate identification, through MS, of this fungus’ peptides. This landmark event has greatly facilitated the development of proteomics studies exploring the biology of the fungus; to date, mainly mycelium samples have been used. Only a few reports have aimed at the study of fractions of the total proteome, and all of these are focused on the secretome. The role of several particular proteins related to fungal pathogenicity, metabolism, biology, etc. has been elucidated, but the number of Botrytis proteins found, as a proportion of the total proteins predicted from the genome, remains below 10 %. There is much work to be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderete JF, Millsap KW, Lehker MW et al (2001) Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell Microbiol 3(6):359–370

    Article  CAS  PubMed  Google Scholar 

  • Amselem J, Cuomo CA, Van Kan JA, et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Google Scholar 

  • Beroza P, Villar HO, Wick MM et al (2002) Chemoproteomics as a basis for post-genomic drug discovery. Drug Discov Today 7(15):807–814

    Article  CAS  PubMed  Google Scholar 

  • Brower V (2001) Proteomics: biology in the post-genomic era. EMBO Rep 2(7):558–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Fang Y, Yao L et al (2007) Does drug-target have a likeness? Methods Inf Med 46(3):360–363

    PubMed  Google Scholar 

  • Cherrad S, Girard V, Dieryckx C et al (2012) Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics 4(8):835–846

    Article  CAS  PubMed  Google Scholar 

  • Cilindre C, Jegou S, Hovasse A et al (2008) Proteomics approach to identify champagne wine proteins as modified by Botrytis cinerea infection. J Proteome Res 7(3):1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Dass C (2000) Principles and practice of biological mass spectrometry, Wiley-Interscience series on mass spectrometry. Wiley, New York, 448 p

    Google Scholar 

  • Davanture M, Dumur J, Bataillé-Simoneau N et al (2014) Phosphoproteome profiles of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea during exponential growth in axenic cultures. Proteomics 14(13–14):1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Dujon B (1996) The yeast genome project: what did we learn? Trends Genet 12:263–270

    Article  CAS  PubMed  Google Scholar 

  • Durán-Patrón R, Cantoral JM, Hernández-Galán R et al (2004) The biodegradation of the phytotoxic metabolite botrydial by its parent organism, Botrytis cinerea. J Chem Res 2004(6):441–443

    Article  Google Scholar 

  • Espino JJ, Gutiérrez-Sánchez G, Brito N et al (2010) The Botrytis cinerea early secretome. Proteomics 10(16):3020–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Acero FJ, Jorge I, Calvo E et al (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6:S88–S96

    Article  PubMed  Google Scholar 

  • Fernandez-Acero FJ, Carbu M, Garrido C et al (2007a) Proteomic advances in phytopathogenic fungi. Curr Proteome 4:79–88

    Article  CAS  Google Scholar 

  • Fernandez-Acero FJ, Jorge I, Calvo E et al (2007b) Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potentia tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187:207–215

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Acero FJ, Colby T, Harzen A et al (2009) Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 9:2892–2902

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Acero FJ, Colby T, Harzen A et al (2010) 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10(12):2270–2280

    Article  PubMed  Google Scholar 

  • Fernández-Acero FJ, Carbú M, El-Akhal MR et al (2011) Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int J Mol Sci 12(1):795–816. doi:10.3390/ijms12010795

    Article  Google Scholar 

  • Frías M, González C, Brito N (2011) BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192(2):483–495

    Article  PubMed  Google Scholar 

  • Garrido C, Cantoral JM, Carbú M et al (2011) New proteomic approaches to plant pathogenic fungi. Curr Proteomics 2011(4):306–315

    Google Scholar 

  • González Fernández R, Prats E, Jorrin J (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:1–36. doi:10.1155/2010/932527

    Google Scholar 

  • Gonzalez-Fernandez R, Aloria K, Arizmendi JM et al (2013) Application of label-free shotgun nUPLC-MSE and 2-DE approaches in the study of Botrytis cinerea mycelium. J Proteome Res 12(6):3042–3056

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez R, Aloria K, Valero-Galvan J et al (2014) Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. J Proteome 97:195–221

    Article  CAS  Google Scholar 

  • Hack CJ (2004) Integrated transcriptome and proteome data: the challenges ahead. Brief Funct Genomic Proteomic 3(3):212–219. doi:10.1093/bfgp/3.3.212

    Article  CAS  PubMed  Google Scholar 

  • Haider S, Pal R (2013) Integrated analysis of transcriptomic and proteomic data. Curr Genomics 14(2):91–110. doi:10.2174/1389202911314020003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández R, Nombela C, Diez-Orejas R et al (2004) Two-dimensional reference map of Candida albicans hyphal forms. Proteomics 4:374–382

    Article  PubMed  Google Scholar 

  • Hillenkamp F, Karas M, Beavis RC et al (1991) Matrix-associated laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63:A1193–A1202

    Article  Google Scholar 

  • Huan X, HangYang X, MingZhi L et al (2007) Learning the drug target-likeness of a protein. Proteomics 7(23):4255–4263

    Article  Google Scholar 

  • James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30(4):279–331

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2007) Proteomics of filamentous fungi. Tren Biotechnol 25(9):395–400

    Article  CAS  Google Scholar 

  • Li B, Wang W, Zong Y et al (2012) Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 11(8):4249–4260

    Article  CAS  PubMed  Google Scholar 

  • Lyon GD, Goodman BA, Williamson B (2004) Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers: Dordrecht, The Netherlands

    Google Scholar 

  • Manteau S, Abouna S, Lambert B et al (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43(3):359–366

    Article  CAS  PubMed  Google Scholar 

  • Marx V (2013) Targeted proteomics. Nat Methods 10:19–22

    Article  CAS  PubMed  Google Scholar 

  • Minguez P, Parca L, Diella F et al (2012) Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol 8:1–14

    Article  Google Scholar 

  • Mulema JMK, Okori P, Denby KJ (2011) Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea interaction using two-dimensional liquid chromatography. Afr J Biotechnol 10(76):17551–17563

    CAS  Google Scholar 

  • Rossignol T, Kobi D, Jacquet-Gutfreund L et al (2009) The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. J Appl Microbiol 107(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Atwood JA III, Orlando R et al (2009a) Comparative proteomic analysis of Botrytis cinerea secretome. J Proteome Res 8(3):1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Gutierrez-Sanchez G, Orlando R, Bergmann C (2009b) A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 9(11):3126–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah P, Powell ALT, Orlando R et al (2012) Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. J Proteome Res 11(4):2178–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staats M, van Kan JA (2013) Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot Cell 11(11):1413–1414. doi:10.1128/EC.00164-12

    Google Scholar 

  • Staats M, van Kan JA (2013) Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot Cell. 2012 Nov;11(11):1413–4. doi: 10.1128/EC.00164-12.

    Google Scholar 

  • ten Have A, Espino JJ, Dekkers E et al (2010) The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol 47(1):53–65

    Article  PubMed  Google Scholar 

  • Tietjen K, Schreier PH (2013) New targets for fungicides. In: Modern methods in crop protection research. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 197–216

    Google Scholar 

  • Tudzynski P, Kokkelink L (2009) Botrytis cinerea: molecular aspects of a necrotrophic life style. In: Deising HB (ed) The mycota. Springer, Berlin, pp 29–50

    Chapter  Google Scholar 

  • Van Sluyter SC, Warnock NI, Schmidt S et al (2013) Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking. J Agric Food Chem 61(40):9705–9711

    PubMed  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA et al (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Spanish Government DGICYT – AGL2012-39798-C02-02 (www.micinn.es/portal/site/MICINN/). Eva Liñeiro was supported by a FPI grant from the University of Cadiz (2010-152). Special thanks are given to Celedonio Gonzalez (University of La Laguna) and Fiona McCarthy (PI of Agbase) for their guidance, support and patience in unravelling bioinformatics data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Fernández-Acero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liñeiro, E., Cantoral, J.M., Fernández-Acero, F.J. (2016). Contribution of Proteomics Research to Understanding Botrytis Biology and Pathogenicity. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_16

Download citation

Publish with us

Policies and ethics