Skip to main content

Abstract

The knowledge about the molecular mechanisms underlying Botrytis cinerea attack on susceptible hosts has expanded greatly in the last years. While many details are still missing, it is possible now to generate a higher resolution image of the molecular patterns that regulate pathogenic development of this broad host range necrotroph. Several decades of molecular research, including the complete genome sequencing and analyses of two B. cinerea strains, have culminated into a working model outlining the molecular strategy used by B. cinerea in the infection process. It is now apparent that a complex signalling network regulates secretion of a large set of proteins and phytotoxic secondary metabolites, which are necessary for progression of the infection from the early to late stages. Furthermore, manipulation of the plant hyper-sensitive response (HR), a form of programmed cell death (PCD), has been proposed to play a central role in the pathogenic strategy of B. cinerea. Although the molecular details of this aspect are largely uncharacterized, it is possible that some of the secreted proteins and metabolites function as effectors that target the PCD machinery. The virulence factors that have been revealed in these various categories and in others are reviewed in this chapter, with special emphasis on secreted proteins and PCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:e111

    Article  Google Scholar 

  • Babaeizad V, Imani J, Kogel KH et al (2009) Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor Appl Genet 118:455–463

    Article  CAS  PubMed  Google Scholar 

  • Baccelli I, Luti S, Bernardi R et al (2013) Cerato-platanin shows expansin-like activity on cellulosic materials. Appl Microbiol Biotechnol 98:175–184

    Article  PubMed  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  CAS  PubMed  Google Scholar 

  • Bessire M, Chassot C, Jacquat A-C et al (2007) A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26:2158–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boddi S, Comparini C, Calamassi R et al (2004) Cerato-platanin protein is located in the cell walls of ascospores, conidia and hyphae of Ceratocystis fimbriata f. sp. platani. FEMS Microbiol Lett 233:341–346

    Article  CAS  PubMed  Google Scholar 

  • Brito N, Espino JJ, González C (2006) The endo-ß-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant-Microbe Interact 19:25–32

    Article  CAS  PubMed  Google Scholar 

  • Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–980

    Article  CAS  PubMed  Google Scholar 

  • Cherrad S, Girard V, Dieryckx C et al (2012) Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics 4:835–846

    Article  CAS  PubMed  Google Scholar 

  • Choquer M, Fournier E, Kunz C et al (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  CAS  PubMed  Google Scholar 

  • Clem RJ, Hardwick JM, Miller LK (1996) Anti-apoptotic genes of baculoviruses. Cell Death Differ 3:9–16

    CAS  PubMed  Google Scholar 

  • Coll NS, Vercammen D, Smidler A et al (2010) Arabidopsis type I metacaspases control cell death. Science 330:1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Commenil P, Belingheri L, Dehorter B (1998) Antilipase antibodies prevent infection of tomato leaves by Botrytis cinerea. Physiol Mol Plant Pathol 52:1–14

    Article  CAS  Google Scholar 

  • Cuesta Arenas Y, Kalkman ERIC, Schouten A et al (2010) Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea. Physiol Mol Plant Pathol 74:376–386

    Article  Google Scholar 

  • de Oliveira AL, Gallo M, Pazzagli L et al (2011) The structure of the elicitor Cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double psibeta-barrel fold and carbohydrate binding. J Biol Chem 286:17560–17568

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T et al (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 98:6957–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R et al (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694

    Article  CAS  PubMed  Google Scholar 

  • Eichmann R, Schultheiss H, Kogel KH et al (2004) The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol Plant-Microbe Interact 17:484–490

    Article  CAS  PubMed  Google Scholar 

  • El Oirdi M, Bouarab K (2007) Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytol 175:131–139

    Article  PubMed  Google Scholar 

  • Ellis JG, Rafiqi M, Gan P et al (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:399–405

    Article  CAS  PubMed  Google Scholar 

  • Epple P, Mack AA, Morris VR et al (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci U S A 100:6831–6836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espino JJ, Brito N, Noda J et al (2005) Botrytis cinerea endo-ß-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol 66:213–221

    Article  CAS  Google Scholar 

  • Espino JJ, Gutiérrez-Sánchez G, Brito N et al (2010) The Botrytis cinerea early secretome. Proteomics 10:3020–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Acero FJ, Colby T, Harzen A et al (2010) 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10:2270–2280

    Article  PubMed  Google Scholar 

  • Frías M, González C, Brito N (2011) BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192:483–495

    Article  PubMed  Google Scholar 

  • Frías M, Brito N, González M et al (2014) The phytotoxic activity of the cerato-platanin BcSpl1 resides in a two-peptide motif in the protein surface. Mol Plant Pathol 15:342–351

    Article  PubMed  Google Scholar 

  • Gentile AC (1954) Carbohydrate metabolism and oxalic acid synthesis by Botrytis cinerea. Plant Physiol 29:257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–1807

    Article  CAS  PubMed  Google Scholar 

  • González M, Brito N, González C (2012) High abundance of serine/threonine-rich regions predicted to be hyper-O-glycosylated in the extracellular proteins coded by eight fungal genomes. BMC Microbiol 12:213

    Article  PubMed  PubMed Central  Google Scholar 

  • González M, Brito N, Frías M et al (2013) Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence. PLoS ONE 8:e65924

    Article  PubMed  PubMed Central  Google Scholar 

  • Gourgues M, Brunet-Simon A, Lebrun MH et al (2004) The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619–629

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Rachmilevitch S, Tiwari BS et al (2006) An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96:299–307

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A 93:12094–12097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronover CS, Schorn C, Tudzynski B (2004) Identification of Botrytis cinerea genes up-regulated during infection and controlled by the G alpha subunit BCG1 using suppression subtractive hybridization (SSH). Mol Plant-Microbe Interact 17:537–546

    Article  CAS  Google Scholar 

  • Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 49:369–390

    Article  CAS  PubMed  Google Scholar 

  • Hoeberichts FA, Ten HA, Woltering EJ (2003) A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517–522

    Article  CAS  PubMed  Google Scholar 

  • Imani J, Baltruschat H, Stein E et al (2006) Expression of barley BAX inhibitor-1 in carrots confers resistance to Botrytis cinerea. Mol Plant Pathol 7:279–284

    Article  CAS  PubMed  Google Scholar 

  • Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9:e1003287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kars I, Krooshof GH, Wagemakers L et al (2005a) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    Article  CAS  PubMed  Google Scholar 

  • Kars I, McCalman M, Wagemakers L et al (2005b) Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol 6:641–652

    Article  CAS  PubMed  Google Scholar 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant-Microbe Interact 21:605–612

    Article  CAS  PubMed  Google Scholar 

  • Li B, Wang W, Zong Y et al (2012) Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 11:4249–4260

    Article  CAS  PubMed  Google Scholar 

  • Lincoln JE, Richael C, Overduin B et al (2002) Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci U S A 99:15217–15221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima M, Akutsu K (2014) Virulence factors of Botrytis cinerea. J Gen Plant Pathol 80:15–23

    Article  CAS  Google Scholar 

  • Nguyen QB, Itoh K, Van Vu B et al (2011) Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol Microbiol 81:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Noda J, Brito N, Gonzalez C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Pazzagli L, Cappugi G, Manao G et al (1999) Purification, characterization, and amino acid sequence of Cerato-platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. platani. J Biol Chem 274:24959–24964

    Article  CAS  PubMed  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plett JM, Kemppainen M, Kale SD et al (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F et al (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis H, Pfiffi S, Hahn M (2005) Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol 6:257–267

    Article  CAS  PubMed  Google Scholar 

  • Rolke Y, Liu SJ, Quidde T et al (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi FR, Gárriz A, Marina M et al (2011) The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol Plant-Microbe Interact 24:888–896

    Article  CAS  PubMed  Google Scholar 

  • Rowe HC, Walley JW, Corwin J et al (2010) Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog 6:e1000861

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah P, Atwood JA, Orlando R et al (2009a) Comparative proteomic analysis of Botrytis cinerea secretome. J Proteome Res 8:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Gutiérrez-Sánchez G, Orlando R et al (2009b) A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 9:3126–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon A, Finkelshtein A (2009) Programmed cell death in fungal-plant interactions. In: Deising HB (ed) The mycota XXII, vol V, 2nd edn, Plant relationships. Springer, Heidelberg, p 219

    Google Scholar 

  • Sharon A, Shlezinger N (2013) Fungi infecting plants and animals: killers, non-killers, and cell death. PLoS Pathog 9:e1003517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlezinger N, Minz A, Gur Y et al (2011) Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog 7:e1002185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegmund U, Heller J, Van Kan JA et al (2013) The NADPH oxidase complexes in Botrytis cinerea: evidence for a close association with the ER and the tetraspanin Pls1. PLoS ONE 8:e55879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    Article  CAS  PubMed  Google Scholar 

  • ten Have A, Mulder W, Visser J et al (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact 11:1009–1016

    Article  PubMed  Google Scholar 

  • ten Have A, Espino JJ, Dekkers E et al (2010) The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol 47:53–65

    Article  PubMed  Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Valette-Collet O, Cimerman A, Reignault P et al (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant-Microbe Interact 16:360–367

    Article  CAS  PubMed  Google Scholar 

  • Van der Vlugt-Bergmans CJB, Wagemakers CAM, Van Kan JAL (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant-Microbe Interact 10:21–29

    Article  PubMed  Google Scholar 

  • Van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  Google Scholar 

  • Van Kan JAL, Van’t Klooster JW, Wagemakers CAM et al (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant-Microbe Interact 10:30–38

    Article  PubMed  Google Scholar 

  • Verhoeff K, Leeman M, Van Peer R et al (1988) Changes in pH and the production of organic acids during colonization of tomato petioles by Botrytis cinerea. J Phytopathol 122:327–336

    Article  CAS  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B et al (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P et al (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang H, Li G et al (2009) Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Plant Biotechnol J 7:763–777

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Yu J-Q, Chen Z (2014) The perplexing role of autophagy in plant innate immune responses. Mol Plant Pathol 15:637–645

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nélida Brito or Amir Sharon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González, C., Brito, N., Sharon, A. (2016). Infection Process and Fungal Virulence Factors. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_12

Download citation

Publish with us

Policies and ethics