Skip to main content

Chemical Control and Resistance Management of Botrytis Diseases

  • Chapter
  • First Online:
Book cover Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

Chemical control remains the easiest way to manage Botrytis epidemics on many crops. Nevertheless, actual concerns about the environment, human health and control sustainability invite to a smarter use of fungicides, aiming to delay resistance evolution in pathogen populations. This chapter deals with the mode of action of botryticides (including multi-site toxicants and molecules affecting specifically respiration, cytoskeleton, osmoregulation, sterol and amino-acid biosynthesis) and associated resistance cases, mostly due to target site modifications. We also present original resistance mechanisms for fungi such as detoxification and multidrug resistance. Finally, this chapter introduces strategies available to decrease selection pressure exerted by fungicides on Botrytis spp. populations with the long-term aim to improve resistance management in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi T, Mitani S, Komyoji T et al (1996) Quantitative structure-activity relationships of fluazinam and related fungicidal N-phenylpyridinamines: preventive activity against Sphaerotheca fuliginea, Pyricularia oryzae and Rhizoctonia solani. J Pestic Sci 21(1):23–29

    Article  CAS  Google Scholar 

  • Albertini C, Leroux P (2004) A Botrytis cinerea putative 3-keto reductase gene (ERG27) that is homologous to the mammalian 17- beta-hydroxysteroid dehydrogenase type 7 gene. Eur J Plant Pathol 110(7):723–733

    Article  CAS  Google Scholar 

  • Amiri A, Heath SM, Peres NA (2014) Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Dis 98(4):532–539

    Article  CAS  Google Scholar 

  • Antonovics J, Alexander HM (1989) The concept of fitness in plant-fungal pathogen systems. In: Plant disease epidemiology, vol 2: Genetics, resistance, and management. McGraw-Hill Publishing Company, New York, pp 185–214

    Google Scholar 

  • Asadollahi M, Szojka A, Fekete E et al (2013) Resistance to QoI fungicide and cytochrome b diversity in the Hungarian Botrytis cinerea population. J Agric Sci Technol 15(2):397–407

    CAS  Google Scholar 

  • Balba H (2007) Review of strobilurin fungicide chemicals. J Environ Sci Health B-Pestic Food Contam Agric Waste 42(4):441–451

    Article  CAS  Google Scholar 

  • Banno S, Fukumori F, Ichiishi A et al (2008) Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays. Phytopathology 98(4):397–404

    Article  CAS  PubMed  Google Scholar 

  • Banno S, Yamashita K, Fukumori F et al (2009) Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathol 58(1):120–129

    Article  CAS  Google Scholar 

  • Bardas GA, Myresiotis CK, Karaoglanidis GS (2008) Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology 98(4):443–450

    Article  CAS  PubMed  Google Scholar 

  • Bernard BK, Gordon EB (2000) An evaluation of the common mechanism approach to the Food Quality Protection Act: captan and four related fungicides, a practical example. Int J Toxicol 19(1):43–61

    Article  CAS  Google Scholar 

  • Billard A, Fillinger S, Leroux P et al (2011) Fenhexamid resistance in the Botrytis species complex, responsible for grey mould disease. In: Thajuddin N (ed) Fungicides – beneficial and harmful aspects. InTech, Rijeka, Croatia. pp 61–78 http://www.intechopen.com/books/fungicides-beneficial-and-harmful-aspects

    Google Scholar 

  • Billard A, Fillinger S, Leroux P et al (2012) Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest Manag Sci 68(5):684–691

    Article  CAS  PubMed  Google Scholar 

  • Bollen G, Scholten G (1971) Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Neth J Plant Pathol 77:83–90

    Article  CAS  Google Scholar 

  • Brandt U, Schubert J, Geck P et al (1992) Uncoupling activity and physicochemical properties of derivatives of fluazinam. BBA 1101(1):41–47

    CAS  PubMed  Google Scholar 

  • Brent KJ, Hollomon DW (2007) Fungicide resistance: the assessment of risk, FRAC Monograph 2. Croplife International, Brussels

    Google Scholar 

  • Carisse O, Tremblay DM (2007) Incidence and significance of iprodione-insensitive isolates of Botrytis squamosa. Plant Dis 91(1):41–46

    Article  CAS  Google Scholar 

  • Cecchini G, Maklashina E, Yankovskaya V et al (2003) Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases. FEBS Lett 545(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Chapeland F, Fritz R, Lanen C et al (1999) Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Bortytis cinerea (Botryotinia fuckeliana). Pestic Biochem Physiol 64:85–100

    Article  CAS  Google Scholar 

  • Corbett J, Wright K, Baillie A (1984) The biochemical mode of action of pesticides, 2nd edn. Academic, London

    Google Scholar 

  • Cui W, Beever RE, Parkes SL et al (2004) Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94(10):1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Davidse L, Ishii T (1995) Biochemical and molecular aspects of benzimidazoles, N-phenylcarbamates and N-phenylformamidoximes and the mechanisms of resistance to the compounds. In: Lyr H (ed) Modern selective fungicides. Gustav Fischer Verlag, Iena

    Google Scholar 

  • De Miccolis Angelini RM, Habib W, Rotolo C et al (2010) Selection, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to the fungicide boscalid. Eur J Plant Pathol 128(2):185–199

    Article  CAS  Google Scholar 

  • De Miccolis Angelini RM, Pollastro S, Faretra F (2012) Genetics of fungcide resistance in Botrytis cinerea. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Oxfordshire, pp 237–250

    Chapter  Google Scholar 

  • De Miccolis Angelini RM, Masiello M, Rotolo C et al (2014) Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea). Pest Manag Sci 70(12):1884–1893

    Article  PubMed  CAS  Google Scholar 

  • Debieu D, Leroux P (in press) Mechanisms of resistance: sterol biosynthesis inhibitors – C-4 demethylation. In: Ishii H, Hollomon DW (eds) Fungicide resistance in plant pathogens: principles and a guide to practical management. Springer, Japan

    Google Scholar 

  • Debieu D, Bach J, Hugon M et al (2001) The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pest Manag Sci 57:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Debieu D, Bach J, Montesinos E et al (2013) Role of sterol 3-ketoreductase sensitivity in susceptibility to the fungicide fenhexamid in Botrytis cinerea and other phytopathogenic fungi. Pest Manag Sci 69(5):642–651

    Article  CAS  PubMed  Google Scholar 

  • Delen N, Yildiz M, Maraite H (1984) Benzimidazole and dithiocarbamate resistance of Botrytis cinerea on greenhouse crops in Turkey. Meded Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 49(2a):153–161

    CAS  Google Scholar 

  • Delye C, Jasieniuk M, Le Corre V (2013) Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29(11):649–658

    Article  CAS  PubMed  Google Scholar 

  • Esterio M, Ramos C, Walker AS et al (2011) Phenotypic and genetic characterization of Chilean isolates of Botrytis cinerea with different levels of sensitivity to fenhexamid. Phytopathol Mediterr 50(3):414–420

    CAS  Google Scholar 

  • Faretra F, Pollastro S (1991) Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea). Mycol Res 95(8):943–951

    Article  CAS  Google Scholar 

  • Fenner K, Canonica S, Wackett LP et al (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341(6147):752–758

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ortuno D, Chen FP, Schnabel G (2012) Resistance to pyraclostrobin and boscalid in Botrytis cinerea isolates from strawberry fields in the Carolinas. Plant Dis 96(8):1198–1203

    Article  CAS  Google Scholar 

  • Ffrench-Constant RH (2013) The molecular genetics of insecticide resistance. Genetics 194(4):807–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillinger S, Leroux P, Auclair C et al (2008) Genetic analysis of fenhexamid resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrob Agents Chemother 52(11):3933–3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillinger S, Ajouz S, Nicot PC et al (2012) Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS One 7(8):e42520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forster B, Staub T (1996) Basis for use strategies of anilinopyrimidine and phenylpyrrole fungicides against Botrytis cinerea. Crop Prot 15(6):529–537

    Article  CAS  Google Scholar 

  • Fritz R, Lanen C, Colas V et al (1997) Inhibition of methionine biosynthesis in Botrytis cinerea by the anilinopyrimidine fungicide pyrimethanil. Pestic Sci 49:40–46

    Article  CAS  Google Scholar 

  • Fritz R, Lanen C, Chapeland-Leclerc F et al (2003) Effect of the anilinopyrimidine fungicide pyrimethanil on the cystathionine beta-lyase of Botrytis cinerea. Pestic Biochem Physiol 77(2):54–65

    Article  CAS  Google Scholar 

  • Fujimura M, Ochiai N, Ichiichi A et al (2000) Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in os and cut mutant strains of Neurospora crassa. J Pestic Sci 25:31–36

    Article  CAS  Google Scholar 

  • Gessler C, Sozzi D, Kern H (1981) Benzimidazole fungicides – mode of action and problems. Ber Schweizerischen Botanischen Ges 90(1–2):45–54

    Google Scholar 

  • Gisi U, Sierotzki H, Cook A et al (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci 58(9):859–867

    Article  CAS  PubMed  Google Scholar 

  • Glättli A, Grote T, Stammler G (2011) SDH-inhibitors: history, biological performance and molecular mode of action. In: Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds VI. DPG-Verlag, Braunschweig, pp 159–170

    Google Scholar 

  • Grabke A, Fernandez-Ortuno D, Schnabel G (2013) Fenhexamid resistance in Botrytis cinerea from strawberry fields in the Carolinas is associated with four target gene mutations. Plant Dis 97(2):271–276

    Article  CAS  Google Scholar 

  • Guo ZJ, Miyoshi H, Komyoji T et al (1991) Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. BBA 1056(1):89–92

    CAS  Google Scholar 

  • Hagerhall C (1997) Succinate: quinone oxidoreductases. Variations on a conserved theme. BBA 1320(2):107–141

    CAS  PubMed  Google Scholar 

  • Hayes BME, Anderson MA, Traven A et al (2014) Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cell Mol Life Sci 71(14):2651–2666

    Article  CAS  PubMed  Google Scholar 

  • Hollomon DW, Brent KJ (2009) Combating plant diseases—the Darwin connection. Pest Manag Sci 65(11):1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Hsiang T, Chastagner GA (1991) Growth and virulence of fungicide-resistant isolates of 3 species of Botrytis. Can J Plant Pathol 13(3):226–231

    Article  CAS  Google Scholar 

  • Hsiang T, Chastagner GA (1992) Production and viability of sclerotia from fungicide-resistant and fungicide-sensitive isolates of Botrytis cinerea, B. elliptica and B. tulipae. Plant Pathol 41(5):600–605

    Article  CAS  Google Scholar 

  • Ishii H, Yano K, Date H et al (2007) Molecular characterization and diagnosis of QoI resistance in cucumber and eggplant fungal pathogens. Phytopathology 97(11):1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Fountaine J, Chung WH et al (2009) Characterisation of Qol-resistant field isolates of Botrytis cinerea from citrus and strawberry. Pest Manag Sci 65(8):916–922

    Article  CAS  PubMed  Google Scholar 

  • Jiang JH, Ding LS, Michailides TJ et al (2009) Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea. Pestic Biochem Physiol 93(2):72–76

    Article  CAS  Google Scholar 

  • Jochova J, Rupes I, Peberdy JF (1993) Effect of the microtubule inhibitor benomyl on protein secretion in Aspergillus nidulans. Mycol Res 97:23–27

    Article  CAS  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. BBA 1604(2):77–94

    CAS  PubMed  Google Scholar 

  • Kataoka S, Takagaki M, Kaku K et al (2010) Mechanism of action and selectivity of a novel fungicide, pyribencarb. J Pestic Sci 35(2):99–106

    Article  CAS  Google Scholar 

  • Kim YK, Xiao CL (2010) Resistance to pyraclostrobin and boscalid in populations of Botrytis cinerea from stored apples in Washington State. Plant Dis 94(5):604–612

    Article  CAS  Google Scholar 

  • Kim J, Min JY, Bae YS et al (2009) Molecular analysis of Botrytis cinerea causing ginseng grey mould resistant to carbendazim and the mixture of carbendazin plus diethofencarb. Plant Pathol J 25(4):322–327

    Article  CAS  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A et al (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12):e1000696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuck K, Russell PE (2006) FRAC: combined resistance risk assessment. Asp Appl Biol 78:3–10

    Google Scholar 

  • Lalève A, Fillinger S, Walker AS (2014a) Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Fungal Genet Biol 67:24–36

    Article  PubMed  CAS  Google Scholar 

  • Lalève A, Gamet S, Walker AS et al (2014b) Site-directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding. Environ Microbiol 16(7):2253–2266

    Article  PubMed  CAS  Google Scholar 

  • Lenormand T, Bourguet D, Guillemaud T et al (1999) Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400(6747):861–864

    Article  CAS  PubMed  Google Scholar 

  • Leroch M, Plesken C, Weber RW et al (2013) Gray mould populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol 79(1):159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroux P (1996) Recent developments in the mode of action of fungicides. Pestic Sci 47(2):191–197

    Article  CAS  Google Scholar 

  • Leroux P (2004) Chemical control of Botrytis cinerea and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 195–222

    Google Scholar 

  • Leroux P, Clerjeau M (1985) Resistance of Botrytis cinerea Pers. and Plasmopara viticola (Berl. and de Toni) to fungicides in French vineyards. Crop Prot 4(2):137–160

    Article  CAS  Google Scholar 

  • Leroux P, Walker AS (2010) Les fongicides affectant les processus respiratoires. Episode 1: Modes d’action et phénomènes de résistance chez les anciennes substances (multisites et unisites affectant la biodisponibilité de l’ATP) et les nouvelles de type SDHI. Phytoma – La Défense des Végétaux 631:8–11

    CAS  Google Scholar 

  • Leroux P, Walker AS (2013) Activity of fungicides and modulators of membrane drug transporters in field strains of Botrytis cinerea displaying multidrug resistance. Eur J Plant Pathol 135(4):683–693

    Article  CAS  Google Scholar 

  • Leroux P, Chapeland F, Desbrosses D et al (1999) Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Prot 18(10):687–697

    Article  CAS  Google Scholar 

  • Leroux P, Debieu D, Albertini C et al (2002a) The hydroxyanilide botryticide fenhexamid/ mode of action and mechanism of resistance. In: Dehne H-W, Gisi U, Kuck KH, Russel PE, Lyr H (eds) Modern fungicides and antifungal compounds III. AgroConcept GmbH, Bonn, pp 29–40, Th. Mann Verlag, Gelsenkirchen, Germany, Andover, Hampshire

    Google Scholar 

  • Leroux P, Fritz R, Debieu D et al (2002b) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58(9):876–888

    Article  CAS  PubMed  Google Scholar 

  • Leroux P, Gredt M, Leroch M et al (2010) Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mould. Appl Environ Microbiol 76(19):6615–6630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Leroux P, Fillinger S (2008) The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet Biol 45(7):1062–1074

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Yan L, Luo Y et al (2007) Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pestic Biochem Physiol 88(3):300–306

    Article  CAS  Google Scholar 

  • Malathrakis NE (1989) Resistance of Botrytis cinerea to dichlofluanid in greenhouse vegetables. Plant Dis 73(2):138–141

    Article  CAS  Google Scholar 

  • Mamiev M, Korolev N, Elad Y (2013) Resistance to polyoxin AL and other fungicides in Botrytis cinerea collected from sweet basil crops in Israel. Eur J Plant Pathol 137(1):79–91

    Article  CAS  Google Scholar 

  • McGrath MT (2004) What are fungicides? http://www.apsnet.org/edcenter/intropp/topics/Pages/Fungicides.aspx

  • Mernke D, Dahm S, Walker AS et al (2011) Two promoter rearrangements in a drug efflux transporter gene are responsible for the appearance and spread of multidrug resistance phenotype MDR2 in Botrytis cinerea isolates in French and German vineyards. Phytopathology 101(10):1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Milgroom M, Levin S, Fry W (1989) Population genetics theory and fungicide resistance. In: Plant disease epidemiology. Leonard KJ, Fry WE, McGraw-Hill, New York

    Google Scholar 

  • Morschhäuser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47(2):94–106

    Article  PubMed  CAS  Google Scholar 

  • Mosbach A, Edel D, Kirchhofer L et al (2014) Mutagenesis studies and field resistance mechanisms to SDHIs in the grey mould pathogen Botrytis cinerea. In: Dehne H-W, Deising HB, Fraaije BA et al (eds) Modern fungicides and antifungal compounds. Deutsche Phytomedizinische Gesellschaft, Friedrichroda, pp 91–96

    Google Scholar 

  • Moye-Rowley WS (2003) Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol 73:251–279

    Article  CAS  PubMed  Google Scholar 

  • Myresiotis CK, Bardas GA, Karaoglanidis GS (2008) Baseline sensitivity of Botrytis cinerea to pyraclostrobin and boscalid and control of anilinopyrimidine- and benzimidazole-resistant strains by these fungicides. Plant Dis 92(10):1427–1431

    Article  CAS  Google Scholar 

  • Nakazawa Y, Yamada M (1997) Chemical control of gray mold in Japan – a history of combating fungicide resistance. Agrochem Jpn 71:2–6

    CAS  Google Scholar 

  • Orr HA (2009) Fitness and its role in evolutionary genetics. Nat Rev Genet 10(8):531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima M, Banno S, Okada K et al (2006) Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide-resistant field isolates of Botrytis cinerea. J Gen Plant Pathol 72(1):65–73

    Article  CAS  Google Scholar 

  • Park SY, Jung OJ, Chung YR et al (1997) Isolation and characterization of a benomyl-resistant form of beta-tubulin-encoding gene from the phytopathogenic fungus Botryotinia fuckeliana. Mol Cell 7(1):104–109

    CAS  Google Scholar 

  • Pedregosa AM, Rios S, Monistrol IF et al (1995) Effect of the microtubule inhibitor methyl benzimidazol-2-yl carbamate (mbc) on protein secretion and microtubule distribution in Cladosporium cucumerinum. Mycol Res 99:43–48

    Article  CAS  Google Scholar 

  • Phillips MWA, McDougall J (2012) Crop protection market trends and opportunities for new active ingredients. Abstracts of Papers of the American Chemical Society 244

    Google Scholar 

  • Pillonel C, Meyer T (1997) Effect of phenylpyrroles on glycerol accumulation and protein kinase activity of Neurospora crassa. Pestic Sci 49:229–236

    Article  CAS  Google Scholar 

  • Pollastro S, Faretra F, DiCanio V et al (1996) Characterization and genetic analysis of field isolates of Botryotinia fuckeliana (Botrytis cinerea) resistant to dichlofluanid. Eur J Plant Pathol 102(7):607–613

    Article  Google Scholar 

  • Rewal N, Coley-Smith JR, Sealy-Lewis HM (1991) Studies on resistance to dichlofluanid and other fungicides in Botrytis cinerea. Plant Pathol 40(4):554–560

    Article  CAS  Google Scholar 

  • REX Consortium I (2013) Heterogeneity of selection and the evolution of resistance. Trends Ecol Evol 28(2):110–118

    Article  Google Scholar 

  • Roberts T, Hutson D, Jewess P et al (1999) Metabolic pathways of agrochemicals – Part 2: Insecticides and fungicides. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  • Rosslenbroich H-J (1999) Efficacy of fenhexamid (KBR 2738) against Botrytis cinerea and related fungal pathogens. Pflanzenschutz-Nachr 52:127–144

    Google Scholar 

  • Rosslenbroich HJ, Stuebler D (2000) Botrytis cinerea – history of chemical control and novel fungicides for its management. Crop Prot 19(8–10):557–561

    Article  CAS  Google Scholar 

  • Russell PE (2005) A century of fungicide evolution. J Agric Sci 143:11–25

    Article  CAS  Google Scholar 

  • Saito S, Cadle-Davidson L, Wilcox WF (2014) Selection, fitness, and control of grape isolates of Botrytis cinerea variably sensitive to fenhexamid. Plant Dis 98(2):233–240

    Article  Google Scholar 

  • Schumacher J, Gautier A, Morgant G et al (2013) A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET. PLoS One 8(1):e53729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierotzki H, Scalliet G (2013) A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103(9):880–887

    Article  CAS  PubMed  Google Scholar 

  • Sierotzki H, Wullschleger J, Alt M et al (2002) Potential mode of resistance to anilinopyrimidine fungicides, in Botrytis cinerea. Paper presented at the 13th International Reinhardsbrunn Symposium, Friedrichroda, Germany, 14–18 May 2001

    Google Scholar 

  • Stammler G, Speakman J (2006) Microtiter method to test the sensitivity of Botrytis cinerea to boscalid. J Phytopathol 154(7–8):508–510

    Article  Google Scholar 

  • Stammler G, Brix B, Nave B et al (2007) Studies on the biological performance of boscalid and its mode of action, Modern fungicides and antifungal compounds V. In: Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (eds) vol 15th international reinhardsbrunn symposium, Friedrichroda

    Google Scholar 

  • Suty A, Pontzen R, Stenzel K (1999) Fenhexamid – sensitivity of Botrytis cinerea: determination of baseline sensitivity and assessment of the resistance risk. Pflanzenschutz-Nachr Bayer 52(2):149–161

    CAS  Google Scholar 

  • Takagaki M, Kataoka S, Kida K et al (2011) A method for monitoring the sensitivity of Botrytis cinerea to pyribencarb. J Pestic Sci 36(2):255–259

    Article  CAS  Google Scholar 

  • Tamura O (2000) Resistance development of grey mould on beans towards fluazinam and relevant countermeasures. Paper presented at the 10th symposium of research committee of fungicide resistance, Okayama, Japan, 5 Apr 2000

    Google Scholar 

  • Tanaka C, Izumitsu K (2010) Two-component signaling system in filamentous fungi and the mode of action of dicarboximide and phenylpyrrol fungicides. In: Carisse O (ed) Fungicides, vol I. InTech, pp 523–538

    Google Scholar 

  • Tellier F, Fritz R, Kerhoas L et al (2008) Characterization of metabolites of fungicidal cymoxanil in a sensitive strain of Botrytis cinerea. J Agric Food Chem 56(17):8050–8057

    Article  CAS  PubMed  Google Scholar 

  • Tellier F, Fritz R, Kerhoas L et al (2009) Metabolism of fungicidal cyanooximes, cymoxanil and analogues in various strains of Botrytis cinerea. Pest Manag Sci 65(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Temperli E, Roos UP, Hohl HR (1991) Germ tube growth and the microtubule cytoskeleton in Phytophthora infestans – effects of antagonists of hyphal growth, microtubule inhibitors, and ionophores. Mycol Res 95:611–617

    Article  CAS  Google Scholar 

  • Terada H (1981) The interaction of highly-active uncouplers with mitochondria. BBA 639(3–4):225–242

    CAS  PubMed  Google Scholar 

  • Tremblay DM, Talbot BG, Carisse O (2003) Sensitivity of Botrytis squamosa to different classes of fungicides. Plant Dis 87(5):573–578

    Article  CAS  Google Scholar 

  • Vallieres C, Trouillard M, Dujardin G et al (2011) Deleterious effect of the Qo inhibitor compound resistance-conferring mutation G143A in the intron-containing cytochrome b gene and mechanisms for bypassing it. Appl Environ Microbiol 77(6):2088–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veloukas T, Karaoglanidis GS (2012) Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Manag Sci 68(6):858–864

    Article  CAS  PubMed  Google Scholar 

  • Veloukas T, Leroch M, Hahn M et al (2011) Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Dis 95(10):1302–1307

    Article  CAS  Google Scholar 

  • Veloukas T, Markoglou AN, Karaoglanidis GS (2013) Differential effect of sdhB gene mutations on the sensitivity to sdhi fungicides in Botrytis cinerea. Plant Dis 97(1):118–122

    Article  CAS  Google Scholar 

  • Veloukas T, Kalogeropoulou P, Markoglou AN et al (2014) Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with Several sdhB and the cytb G143A mutations. Phytopathology 104(4):347–356

    Article  CAS  PubMed  Google Scholar 

  • Verger PJ, Boobis AR (2013) Global food supply. Reevaluate pesticides for food security and safety. Science 341(6147):717–718

    Article  CAS  PubMed  Google Scholar 

  • Viaud M, Fillinger S, Liu W et al (2006) A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant Microbe Interact 19:1042

    Article  CAS  PubMed  Google Scholar 

  • Vignutelli A, Hilber-Bodmer M, Hilber UW (2002) Genetic analysis of resistance to the phenylpyrrole fludioxonil and the dicarboximide vonclozolin in Botryotinia fuckeliana (Botrytis cinerea). Mycol Res 106(3):329–335

    Article  CAS  Google Scholar 

  • Villani SM, Cox KD (2014) Heteroplasmy of the cytochrome b gene in Venturia inaequalis and its involvement in quantitative and practical resistance to trifloxystrobin. Phytopathology 104(9):945–953

    Article  CAS  PubMed  Google Scholar 

  • Walker A-S, Gautier A, Confais J et al (2011) Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101(12):1433–1445

    Article  PubMed  Google Scholar 

  • Walker A-S, Fournier E (2014) Habitat- and host-specific differentiation in the multihost pathogen Botrytis cinerea and evidence for fungicide selection in populations. In: Dehne DW DH, Fraaije B, Gisi U, Hermann D, Mehl A, Oerke EC, Russell PE, Stammler G, Kuck KH, Lyr H (eds) 17th international Reinhardsbrunn conference, Friedrichroda, 21–25 Apr 2013. DPG Spectrum Phytomedizin

    Google Scholar 

  • Walker A-S, Micoud A, Rémuson F et al (2013) French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Manag Sci 69(6):667–678

    Article  CAS  PubMed  Google Scholar 

  • Yarden O, Katan T (1993) Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83(12):1478–1483

    Article  CAS  Google Scholar 

  • Yin Y, Kim Y, Xiao C (2010) Characterization of pyraclostrobin resistance and detection of the Bcbi-143/144 intron in the cytochrome b gene in Botrytis cinerea isolates from apple. Phytopathology 100(6):S143–S143

    Google Scholar 

  • Yin YN, Kim YK, Xiao CL (2011) Molecular characterization of boscalid resistance in field isolates of Botrytis cinerea from apple. Phytopathology 101(8):986–995

    Article  CAS  PubMed  Google Scholar 

  • Yin YN, Kim YK, Xiao CL (2012) Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Phytopathology 102(3):315–322

    Article  CAS  PubMed  Google Scholar 

  • Zhang CQ, Yuan SK, Sun HY et al (2007) Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid. Plant Pathol 56(4):646–653

    Article  CAS  Google Scholar 

  • Zhang CQ, Hu JL, Wei FL et al (2009) Evolution of resistance to different classes of fungicides in Botrytis cinerea from greenhouse vegetables in eastern China. Phytoparasitica 37(4):351–359

    Article  CAS  Google Scholar 

  • Zhang CQ, Liu YH, Zhu GN (2010) Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. Eur J Plant Pathol 126(4):509–515

    Article  CAS  Google Scholar 

  • Zhao H, Kim YK, Huang L et al (2010) Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington State. Postharvest Biol Technol 56(1):12–18

    Article  CAS  Google Scholar 

  • Ziogas BN, Nikou D, Markoglou AN et al (2009) Identification of a novel point mutation in the beta-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. Eur J Plant Pathol 125(1):97–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Pierre Leroux for critical reading and corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Sophie Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fillinger, S., Walker, AS. (2016). Chemical Control and Resistance Management of Botrytis Diseases. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_10

Download citation

Publish with us

Policies and ethics