Skip to main content

Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization

  • Conference paper
Multiple Shooting and Time Domain Decomposition Methods

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 9))

Abstract

We consider optimization problems governed by time-dependent parabolic PDEs and discuss the construction of parallel preconditioners based on the parareal method for the solution of quadratic subproblems which arise within SQP methods. In the case without control constraints, the optimality system of the subproblem is directly reduced to a symmetric PDE system, for which we propose a preconditioner that decouples into a forward and backward PDE solve. In the case of control constraints we apply a semismooth Newton method and apply the preconditioner to the semismooth Newton system. We prove bounds on the condition number of the preconditioned system which shows no or only a weak dependence on the size of regularization parameters for the control. We propose to use the parareal time domain decomposition method for the forward and backward PDE solves within the PDE preconditioner to construct an efficient parallel preconditioner. Numerical results show the efficiency of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author was supported by the DFG within the graduate school Computational Engineering, SFB 666 and SFB 805 and by the BMBF within SIMUROM.

References

  1. Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. In: Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 425–432. Springer, Berlin (2005)

    Google Scholar 

  2. Bal, G., Maday, Y.: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put. In: Recent Developments in Domain Decomposition Methods (Zürich, 2001). Lecture Notes in Computational Science and Engineering, vol. 23, pp. 189–202. Springer, Berlin (2002)

    Google Scholar 

  3. Battermann, A., Heinkenschloss, M.: Preconditioners for Karush-Kuhn-Tucker matrices arising in the optimal control of distributed systems. In: Control and Estimation of Distributed Parameter Systems (Vorau, 1996). International Series of Numerical Mathematics, vol. 126, pp. 15–32. Birkhäuser, Basel (1998)

    Google Scholar 

  4. Battermann, A., Sachs, E.W.: Block preconditioners for KKT systems in PDE-governed optimal control problems. In: Fast Solution of Discretized Optimization Problems (Berlin, 2000). International Series of Numerical Mathematics, vol. 138, pp. 1–18. Birkhäuser, Basel (2001)

    Google Scholar 

  5. Borzì, A.: Smoothers for control- and state-constrained optimal control problems. Comput. Vis. Sci. 11(1), 59–66 (2008)

    Article  MathSciNet  Google Scholar 

  6. Borzi, A., Schulz, V.: Multigrid methods for PDE optimization. SIAM Rev. 51(2), 361–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dollar, H.S., Gould, N.I.M., Stoll, M., Wathen, A.J.: Preconditioning saddle-point systems with applications in optimization. SIAM J. Sci. Comput. 32(1), 249–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9), 1397–1434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischer, P.F., Hecht, F., Maday, Y.: A parareal in time semi-implicit approximation of the Navier-Stokes equations. In: Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 433–440. Springer, Berlin (2005)

    Google Scholar 

  10. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gong, W., Hinze, M., Zhou, Z.J.: Space-time finite element approximation of parabolic optimal control problems. J. Numer. Math. 20(2), 111–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heinkenschloss, M.: A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. J. Comput. Appl. Math. 173(1), 169–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heinkenschloss, M., Vicente, L.N.: Analysis of inexact trust-region SQP algorithms. SIAM J. Optim. 12(2), 283–302 (2001/2002)

    Google Scholar 

  14. Herzog, R., Sachs, E.: Preconditioned conjugate gradient method for optimal control problems with control and state constraints. SIAM J. Matrix Anal. Appl. 31(5), 2291–2317 (2010). doi:10.1137/090779127. http://dx.doi.org/10.1137/090779127

  15. Hintermüller, M., Hinze, M.: A SQP-semismooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints. SIAM J. Optim. 16(4), 1177–1200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003) (2002)

    Google Scholar 

  17. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)

    Google Scholar 

  18. Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maday, Y., Turinici, G.: A parareal in time procedure for the control of partial differential equations. C. R. Math. Acad. Sci. Paris 335(4), 387–392 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mathew, T.P., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners for parabolic optimal control problems. SIAM J. Sci. Comput. 32(3), 1180–1200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pearson, J.W., Stoll, M., Wathen, A.J.: Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function. Numer. Linear Algebra Appl. 21(1), 81–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rees, T., Stoll, M., Wathen, A.: All-at-once preconditioning in PDE-constrained optimization. Kybernetika (Prague) 46(2), 341–360 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Schiela, A., Günther, A.: An interior point algorithm with inexact step computation in function space for state constrained optimal control. Numer. Math. 119(2), 373–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schiela, A., Ulbrich, S.: Operator preconditioning for a class of inequality constrained optimal control problems. SIAM J. Optim. 24(1), 435–466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29(3), 752–773 (2007) (electronic)

    Google Scholar 

  26. Staff, G.A., Rønquist, E.M.: Stability of the parareal algorithm. In: Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 40, pp. 449–456. Springer, Berlin (2005)

    Google Scholar 

  27. Stoll, M., Wathen, A.: Preconditioning for partial differential equation constrained optimization with control constraints. Numer. Linear Algebra Appl. 19(1), 53–71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tröltzsch, F.: On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. SIAM J. Control Optim. 38(1), 294–312 (1999) (electronic)

    Google Scholar 

  29. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, RI (2010). Translated from the 2005 German original by Jürgen Sprekels

    Google Scholar 

  30. Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13(3), 805–842 (2003) (2002)

    Google Scholar 

  31. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization, vol. 11. Society for Industrial and Applied Mathematics (SIAM)/Mathematical Optimization Society, Philadelphia (2011)

    Google Scholar 

  32. Ulbrich, M., Ulbrich, S.: Primal-dual interior-point methods for PDE-constrained optimization. Math. Program. 117(1–2, Ser. B), 435–485 (2009)

    Google Scholar 

  33. Ziems, J.C., Ulbrich, S.: Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM J. Optim. 21(1), 1–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71(238), 479–505 (2002) (electronic)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ulbrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ulbrich, S. (2015). Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds) Multiple Shooting and Time Domain Decomposition Methods. Contributions in Mathematical and Computational Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-23321-5_8

Download citation

Publish with us

Policies and ethics